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For many marine species and habitats, climate change and
overfishing present a double threat. To manage marine resources
effectively, it is necessary to adapt management to changes in
the physical environment. Simple relationships between environ-
mental conditions and fish abundance have long been used in
both fisheries and fishery management. In many cases, however,
physical, biological, and human variables feed back on each other.
For these systems, associations between variables can change as
the system evolves in time. This can obscure relationships between
population dynamics and environmental variability, undermining
our ability to forecast changes in populations tied to physical pro-
cesses. Here we present a methodology for identifying physical
forcing variables based on nonlinear forecasting and show how
the method provides a predictive understanding of the influence
of physical forcing on Pacific sardine.

ecosystem-based management | physical-biological interactions |
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Ecosystem-based management (EBM) is an essential challenge
that places strong demands on our understanding of coupled

social–ecological systems. EBM requires an understanding of
how human activities such as fishing influence and are influenced
by other parts of the ecosystem. This includes accounting for the
effects of the physical environment on exploited populations.
However, the interactions between ecosystem components can be
complex, and unraveling physical–biological interactions remains
a challenge. For instance, a retrospective study of 35 exploited
and unexploited species in the California Current shows that
fishing pressure can amplify the influence of environmental
forcing on populations by truncating the age structure (1). This
study and others (2–4) demonstrate that the effect of environ-
mental forcing on populations can be contingent on fishing effort,
current abundance, and age structure. This raises an important
issue: Ecosystem variables are not separate, decomposable forces.
Instead, their interactions are state-dependent, meaning that the
impact of one variable on another depends on the state of the
variables.
State-dependent behavior can confound many traditional sta-

tistical methods. Witness that valid correlations between physical
and biological variables can be difficult to find (5) and can appear
and disappear with time (6). In fact, nonlinear systems (systems
with state-dependent interactions) can produce mirage correla-
tions: variables that seem positively correlated over one period in
time may seem negatively correlated or unrelated over another
period (7). A meta-analysis of environment–recruitment rela-
tionships in marine populations shows that these correlations
hold up poorly when retested with new data (6). Consequently,
EBM requiresmore robustmethods for identifying driving variables
and understanding their influence on population and community
dynamics. Here, we show that methods based on multivariate
state space reconstruction (SSR) (8) offer an alternative method
for studying physical–biological interactions from observational
time series. It is a robust framework for studying ecosystems
empirically. For those unfamiliar with state space reconstruction,
we recommend two short animations (http://simplex.ucsd.edu/
Movie_s1.mov and http://simplex.ucsd.edu/Movie_s2.mov). These
techniques have been successful in identifying state-dependent

physical–biological interactions in larval reef fish populations (9)
and in models with simple periodic forcing (10). To demonstrate
the utility of multivariate SSR for ecosystem-based management,
we investigate the current conundrum over the management of
Pacific sardine (Sardinops sagax). The Pacific sardine fishery in the
California Current ecosystem (CCE) is a rare example of a fishery
that has been managed with explicit consideration for the envi-
ronment. However, conflicting evidence concerning the effect of
temperature on sardine productivity (11) led to removal of this
pioneering environmental control rule in 2012.
The policy was informed by a rich history of research. Sardine

populations around the world have undergone boom–bust cycles.
Crashes in California have coincided with crashes in other areas
of the world (12), and boom–bust dynamics appear in sedimen-
tary records well before human exploitation began (13). These
facts have led to the hypothesis that changing environmental
conditions drive sardine crashes and/or shifts in distribution, al-
though fishing pressure has likely exacerbated global crashes in
the recent past (3, 14). In the CCE, sardine recruitment seems to
peak when and where upwelling is intermediate (15). In the
CCE, intermediate upwelling is associated with low (14–15 °C)
and high (>20 °C) temperatures. The association between high
sardine recruitment and warm episodes is puzzling, because
warm episodes are associated with low productivity. This sparked
a search for potential mechanisms linking water temperature
and sardine abundance. One possible mechanism is that release
from larval predation during warm periods outweighs the scarcity
of food (16). Alternatively, sardine may respond to offshore
upwelling driven by wind-stress curl, as opposed to coastal up-
welling (17).
Motivated by these studies, Jacobson and MacCall (18) sought

a quantitative relationship between sardine and temperature.
They found a statistical correlation between log reproductive
success (one way of quantifying recruitment) and the 3-y average
of the Scripps Institution of Oceanography (SIO) pier sea sur-
face temperature (SST). They then verified the relationship
using a modeling approach based on generalized additive models
and formulated a best-management strategy for sardine that in-
corporated the influence of sea temperature. In light of these
findings, the Pacific Fishery Management Council modified the
sardine management plan to explicitly account for SST (19).
Recently, McClatchie et al. (11) repeated the correlation analysis
of Jacobson and MacCall (but not the modeling approach) with
the addition of 17 y of new data. They found that the statistical
correlation between recruitment and SST is no longer significant
when the newer data are included. They concluded that the SIO
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pier temperature does not influence sardine dynamics, and the
temperature-based control rule was subsequently rescinded.
Another explanation for these new findings is that temperature

does influence sardine, but in a state-dependent way, causing
mirage correlation between temperature and sardine. Indeed, we
can directly test for state dependence in sardine population dy-
namics using S-maps (20). With S-maps, a family of models that
range from linear (θ = 0) to highly nonlinear (θ ≥ 1) is used to
forecast the target time series. For the sardine ichthyoplankton
time series, nonlinear (state-dependent) models produce better
forecasts than linear models, suggesting that sardine have state-
dependent dynamics (Figs. S1 and S2). Furthermore, Sugihara
et al. (7) analyzed historical landings of sardine and SIO pier SST
with convergent cross-mapping (an alternative to correlation that
detects state-dependent interactions) and found that the SIO
pier temperature does affect sardine.
Consequently, the failure of the sardine–temperature correla-

tion to hold up to retesting does not mean that the SIO pier
temperature is irrelevant to sardine. Rather, the problem requires
an analytical framework specifically suited to ecological systems
with interdependent parts. To this end, the recent work (7) with
convergent cross-mapping detected a cause–effect relationship
between temperature and sardine. However, it is not sufficient for
management to know whether a physical variable is affecting
a population. It is also necessary to predict how environmental
conditions will affect population dynamics. Multivariate SSR can
address this need.
Thus, we seek to demonstrate multivariate SSR as a practical

tool for understanding the influence of temperature on Pacific
sardine population dynamics. First, we present a conceptual
overview of multivariate SSR and use simple models to dem-
onstrate the methods. We then apply the method to ichthyo-
plankton time series of Pacific sardine. We show that when the
population dynamics of sardine are treated nonlinearly, the SIO
SST and other broad-scale indicators can improve forecasts of
year-to-year changes in abundance. We illustrate how multivar-
iate SSR can predict the effect of changes in SIO SST on sardine

and is thereby a useful tool for exploring possible temperature
scenarios. Finally, models show how these methods can predict
the outcomes of harvest targets under different climate regimes.

Primer on Multivariate State Space Reconstruction. SSR is based on
the theory of dynamic systems. If a time series variable X(t) is
part of a dynamic system, a set of rules (e.g., a system of dif-
ference or differential equations) dictates how X changes in time
based on the current value of X and the variables that interact
with X. As an example, consider three species, X, Y, and Z,
modeled with coupled logistic equations that represent a three-
species food chain (21) (SI Text gives a full description). The
differential equations dictate how the abundance of each species
changes in time given the current state of each population.
A typical way to view the system is as separate time series of

each species, as shown for species X in Fig. 1D. However, we can
also view the system in a multidimensional space, taking the
abundances of species X, Y, and Z as the coordinate axes. This
defines the state space of this simple ecosystem. Viewed in the
state space, each time point corresponds to a vector and the
changes in the ecosystem over time (abundances of the three
populations) form a trajectory (Fig. 1A). Two time points nearby
in the state space represent two similar states of the ecosystem and
the populations will follow similar trajectories as time progresses.
Often in ecology only one or a few variables are actually

measured. In these cases, Takens’s theorem and its multivariate
generalization (8, 22, 23) show that it is still possible to represent
the system dynamics in a state space by substituting time lags of
the measured variables [e.g., X(t−1)] for the unknown variables
as coordinates. In effect, the information in the unobserved
variables is encoded in the observed time series, and so a single
time series can be used to reconstruct the state space. This gives
a time-delayed coordinate representation (or embedding) of the
system trajectories. Fig. 1 B and C illustrate univariate (using lags
of only one variable) and multivariate (using lags of two or more
variables) embeddings for the three-species model. Importantly,
the trajectories in the reconstructed state space are uniquely

0
2

4
6

0
5

10
15

0

5

X(t)

Original SS

Y(t)

Z
(t

)

0

5

10 0

5

10
0

5

X(t−τ)

Univariate SS

X(t)

X
(t

−
2 τ

)

0

5

10 0
5

10

0

5

10

X(t−τ)

Multivariate SS

X(t)

Y
(t

)

0 20 40 60 80 100 120 140 160 180 200
0

5

10

time

X
(t

)

A B C

D

Fig. 1. State space reconstruction demonstrated with a three-species logistic model. (A) The trajectory of the model ecosystem is plotted in three dimensions
using the abundances X(t), Y(t), and Z(t) as coordinates. (B) The trajectory is shown in the univariate SSR coordinates, [X(t), X(t−1), X(t−2)], where lags of X
take the place of the other variables. (C) The trajectory is shown in multivariate SSR coordinates, [X(t), X(t−1), Y(t)]. The system is in a similar state (nearby in
state space) at times t1, t2, and t3 (red) based on all three representations. Hence, any of these state spaces (original or reconstructed) can be used for nearest-
neighbor forecasting. (D) The abundance of species X is shown as a time series.
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matched to trajectories in the original state space, and states
(vectors) that are neighboring in one space are also neighboring
in the others. Observe that at time t1, t2, and t3 (shown in red) the
ecosystem is in a similar state based on all three pictures.
One basic application of SSR embeddings is forecasting. Be-

cause vectors nearby in state space evolve similarly in time, the
future abundance at one time point can be predicted based on
the behavior of its nearest neighbors in the reconstructed state
space. In this paper, we use two different types of forecasts. The
first is simplex projection, where a weighted average is taken over
the E + 1 nearest neighbor vectors in the reconstructed state space
(24) (E is the dimension of the state space). The second is S-maps
(20, 25), where a linear model is fit for each observed vector in the
reconstructed state space using all of the remaining vectors (cross-
validation). However, the vectors nearby the target in state space
are given greater weight, controlled by the nonlinearity parameter
θ, and so S-maps can give either linear (θ = 0) or nonlinear (θ > 0)
forecasts. By comparing the performance of locally weighted
(nonlinear) forecasts to the global linear forecasts (θ = 0), S-maps
can be used to test for nonlinear dynamics. A significant increase
in forecast skill for the locally weighted model is taken as evidence
of nonlinear dynamics (state dependence). Note that simplex
projection can be the better tool for exploratory analysis (less
possibility for overfitting), but S-maps can ultimately give better
forecasts. A detailed mathematical description of these tech-
niques with summary code is given in SI Text. Interested parties
are encouraged to contact the authors regarding software and
guidance for analysis.

Validating Multivariate Embeddings. Multivariate embeddings that
use two variables X and Y should make good forecasts only if Y
and X are interacting parts of the same system. This suggests that
SSR forecasting can be used to check for interactions between
variables (7). Each SSR embedding is a different representation
of the same fundamental system. A priori it is not possible to
know whether one particular choice of lagged variables will give
better forecasts than another (8). Stochastically forced systems,
however, are a special case. For a purely stochastic forcing var-
iable Y, the current state cannot be inferred from past values of
the forced variable. The only way to include this environmental
information in SSR forecasts of X is to have Y(t) as a coordinate
variable, and nearest neighbor forecasts based only on lags of
X(t) will necessarily have greater uncertainty. By this logic, if
a stochastic variable Y has an effect on X, then adding Y (with the
appropriate lag) should always improve univariate forecasts of X.
In this way, comparing multivariate to univariate SSR forecasts
can identify stochastic driving variables.

Scenario Exploration with Multivariate SSR. In ecology we are in-
terested not only in knowing whether two variables interact, but
also how they interact. Consider a Ricker model for a population
S (Eq. 1). In this case, the model is exactly known, and we can
simply calculate S(t+1) for different hypothetical past temper-
atures T1, T2, and so on, to understand the effect temperature
has on the population. When studying real populations, however,
the true model is not known. Scenario exploration with multi-
variate SSR is a way to explore climate effects in real systems
without assuming a particular model structure. Scenario explo-
ration involves constructing a multivariate embedding to predict
S(t+1) using different values of T to explore the effect of tem-
perature on the stock.
To demonstrate scenario exploration, we begin with toy models,

which allow us to compare predictions based on multivariate
SSR to calculations with the exact model. The temperature-
driven Ricker model given by Eq. 1 in Materials and Methods is
a simple model of a population that has nonlinear dynamics
and is driven by temperature. We explore the effect of temper-
ature, T, on the stock, S, using the multivariate embedding
[S(t), S(t−1), S(t−2), S(t−3), T(t)]. For each t, we predict the
effect that an increase in past temperature ΔT = 0.1σT (10% of
the SD of the temperature time series) would have on the
population abundance the following year. That is, we use simplex

projection to make a nearest-neighbor forecast of S(t+1) for the
state space vector [S(t), S(t−1), S(t−2), S(t−3), T(t) + ΔT]. Fig.
2A shows the predictions of SSR scenario exploration plotted
against the true values calculated from the model for 10 time
series of 50 y each with different initial conditions and realiza-
tions of T and «proc. The result is robust to a wide range of
growth rates (Fig. S3).
Importantly, SSR methods can be applied in both single- and

multispecies contexts, even when there are no records of the other
interacting species. As a demonstration we repeat the analysis
above on the three-species extension of the basic Ricker model
defined in Eq. 2. However, we only use the time series of the
target species S1 and the temperature T to do scenario explora-
tion. Fig. 2B shows that scenario exploration can still predict the
effect of temperature on a population in a multispecies complex,
even if the other species are unobserved. For both the single- and
multispecies models, the correlation between SSR predictions and
model calculations is high: ρ = 0.75 and 0.86, respectively.

Results
We use multivariate SSR methods to determine whether and
how sardine are affected by their environment. We first apply
multivariate SSR to sardine data to verify that the SIO pier
SST influences sardine dynamics and determine whether it is the
best single environmental indicator variable. Table 1 displays the
improvement in forecast skill ΔF of multivariate embeddings
using the SIO pier SST and other environmental indicators. In-
cluding SIO pier SST in embeddings improves forecasts with
simplex projection, indicating that SIO SST influences sardine,
and ΔF is significantly greater than can be explained by the null
model (P < 0.05). Several other variables show positive ΔF, in-
cluding the Pacific Decadal Oscillation (PDO), North Pacific
Gyre Oscillation (NPGO), and the Southern California Bight
(SCB) satellite SST, suggesting these are also relevant to Pacific
sardine population dynamics. Of these, only the PDO is signifi-
cant (P < 0.05). The PDO and SIO SST are highly correlated, so
this is not surprising. The method suggests three variables that
are least likely important to sardine dynamics: Newport Pier
SST, North Pacific Index (NPI), and Southern Oscillation Index
(SOI); each of these has a strong negative effect on forecasting.
To explicitly test the notion that the influence of environment

(SST) on sardine depends on population state, we compare the
out-of-sample forecasts of Pacific sardine ichthyoplankton with
a univariate linear forecasting model (using only lags of sardine)
to both linear and nonlinear multivariate forecasting models that
also account for temperature. For simplicity, all models use
S-maps, which can be made linear or nonlinear by adjusting the
nonlinear tuning parameter, θ. The base univariate linear (θ = 0)
model is equivalent to an order-E autoregressive (AR) model,
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Fig. 2. Scenario exploration illustrated for a short (50-y) time series gen-
erated with known models that are forced by temperature. For each time
series point t, the effect of warming on S(t+1) is predicted with multivariate
SSR for warming of ΔT = 0.1σ (10% of the SD of T). SSR predictions are
compared with calculations with the known model for (A) a single-species
Ricker model (Eq. 1) and (B) species 1 in a multispecies Ricker model (Eq. 2)
for 10 model realizations.
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whereas the multivariate linear (θ = 0) model has an added
linear term for the SIO pier SST. The nonlinear S-map model
uses the same dimensions as the multivariate linear model, but
the nonlinear parameter θ > 0 is fit in-sample. Fig. 3 shows the
percentage reduction in error of the multivariate models over the
univariate linear base model. Error is quantified as mean ab-
solute error (Fig. 3 Left) or root-mean-squared error (Right).
Using either measurement, the nonlinear model that incorpo-
rates temperature does best. Furthermore, linearly including
temperature increases forecasting error (percentage improve-
ment in error is negative in both plots). Thus, accounting for
temperature only improves forecasts when the model is state-
dependent (nonlinear).
Because multivariate attractor reconstructions using either

SIO SST or PDO give good predictions of sardine abundance,
these embeddings can be used for scenario exploration to un-
derstand how past conditions affected sardine and to predict the
response of sardine to future environmental scenarios. As an
illustration, we do scenario exploration using the multivariate
embedding that includes SIO pier SST, [X(t), X(t−1), X(t−2),
SST(t)]. For each historical observation, X(t), we explore how
X(t+1) would have differed if temperatures were warmer or
cooler by half the SD σSST of the historical pier temperature.
That is, we predict X(t+1) for the state [X(t), X(t−1), X(t−2),
SST(t) ± ΔT], where ΔT = 0.5σSST. Fig. 4 shows the multivariate
SSR prediction for sardine with the historic temperature
(yellow circles), increase in temperature (red triangles), and
decrease in temperature (blue triangles), along with the ob-
served time series (dashed black line). Note that SSR pre-
dictions were made of first differences and converted back
into raw ichthyoplankton abundance.

Discussion
We demonstrated the application of multivariate SSR to study-
ing physical–biological interactions. The predictions obtained do
not assume a particular functional form for the environmental
interaction; they rely only on the choice of the embedding di-
mension and environmental variable(s). This multivariate embed-
ding can then be used in place of model equations to understand
and predict the effect of changes in a driving variable on
population dynamics.
Scenario exploration with multivariate embeddings motivates

the development of new adaptive management schemes based
on short-term forecasting. If time series of a human control
variable (e.g., fishing effort or mortality) are available, manage-
ment could be based on scenario exploration with multivariate

embeddings that include abundance, temperature, and the control
variable. Simultaneously exploring different temperature and
harvesting scenarios could then reveal how temperature affects
the relationship between fishing and future biomass. As an ad
hoc illustration of this idea, take the Ricker model described
by Eq. 3, which explicitly includes temperature and fishing
mortality. Fig. 5 shows the results of using scenario explora-
tion at a single time point to assess the relationship between
fishing mortality and next year’s abundance when the tempera-
ture increases by ΔT = 0.5σT (half the SD of T) from the pre-
vious year (red), remains constant (green), or decreases by ΔT =
0.5σT (blue). The results of scenario exploration (filled squares)
closely match the calculations made with the exact model (dotted
lines). This type of scenario exploration would tell managers
the permissible level of fishing given a target biomass and recent
ocean conditions. This approach is analogous to the greedy
heuristic strategies that are used in high-dimensional approxi-
mate optimization problems (26). Of course, considerable work
remains to be done to develop and evaluate management plans
based on these methods.
More immediately, these methods offer a data-motivated

perspective on the dynamic relationship between sardine and
environmental conditions in the CCE. We find that including
either SIO SST or the PDO in the multivariate embedding
improves forecast skill (ρ) by ∼30%. These indicators reflect en-
vironmental forcing of sardine population dynamics that is not
captured by more traditional methods. We conclude that envi-
ronmental considerations should in fact play an important role in
Pacific sardine management. Additional analyses demonstrating
the influence of SIO SST on Pacific sardine landings using related
SSR methods (7) support this assertion.
Our results further suggest that good management must reflect

the complexity underlying the interaction between environmen-
tal changes and population dynamics (Fig. 3). Exploring the ef-
fect of SIO pier SST on sardine using multivariate SSR (shown in
Fig. 4) suggests that, on average, increasing temperature results
in higher forecasts of abundance than decreasing temperature.
This corroborates the previous results used in the management
plan that warm water is better for sardine. However, our em-
pirical analysis shows that the effect of temperature depends on
the specific state of the population. For example, changes in
temperature seem to have little or opposite effect in the early

Table 1. Relevance of environmental indicators to sardine
dynamics

Variable ρmulti ΔF P

SIO Pier temperature (surface) 0.4085 0.0872 0.04
PDO 0.3968 0.0755 0.04
SCB satellite SST 0.3652 0.0439 0.12
NPGO 0.3452 0.0239 0.19
SIO Pier temperature (bottom) 0.3128 −0.0085 —

MEI 0.3034 −0.0179 —

SOI 0.2434 −0.0779 —

NPI 0.2152 −0.1061 —

Newport Pier temperature (surface) 0.2117 −0.1096 —

Forecasts of sardine ichthyoplankton are compared between the multi-
variate embedding [X(t), X(t−1), X(t−2), Y(t)] and the univariate embedding
[X(t), X(t−1), X(t−2)] for each candidate environmental indicator variable, Y.
The forecast skill (correlation ρ between observations and predictions) of
multivariate embeddings using each of the candidate variables are shown;
the univariate forecast skill is ρuni = 0.3213. ΔF = ρmulti − ρuni > 0
indicates that the environmental variable influences sardine, whereas large
negative ΔF indicates the variable is irrelevant. Significance of ΔF > 0 is
tested using phase-randomized surrogate time series of the environmental
variables. MEI, Multivariate El Niño Index.
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Fig. 3. Linear and nonlinear forecasting models for Pacific sardine icthyo-
plankton that include SIO pier SST are compared with a base univariate
linear model. The left plot shows the percent improvement in mean absolute
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to the SD).
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years of the time series, when the population is at a much lower
abundance, and in later years with very large abundance (e.g.,
1999–2001). This suggests any temperature-sensitive control rule
for sardine should be different at low, intermediate, and high
sardine abundances.
Like other nonparametric methods, SSR benefits from greater

time series length. Although there is no absolute rule regarding
length, forecast skill improves with time series length (7); for
fisheries it is usually difficult to get significant predictability with
time series shorter than 30 points. Therefore, management
applications of SSR will be best suited to fisheries with longer
time series. Even when time series are short, however, good
predictability is possible by combining data from similar fisheries
(27). For practical application to management, it is also impor-
tant to acknowledge measurement error. State space forecasting
is robust to measurement error (28, 29). Furthermore, we can
consider extending the deterministic simplex projection (or S-
map) to incorporate an estimated distribution for measurement
error for each time series point. This would be extended to spatial
distributions for the state vectors in the attractor reconstruction
and ultimately give distributions for the forecast.
Note that we expect greater error in scenario exploration when

temperature scenarios exceed the bounds of historic data. In these
cases, there are no appropriate historical observations of the dy-
namics on which to base forecasts. Themore extreme the scenario,
the greater the chance of encountering dynamics never previously
recorded. Parameterized methods have a potential advantage
over nonparametric methods in extrapolating beyond observed
behavior. However, there is uncertainty in extrapolation with any

method. The grim reality of anthropogenic climate change and
overfishing is that as we continue stressing ecosystems, we catalyze
ecological outcomes that are increasingly surprising but less and
less predictable from historical observations. Regardless of the
analytical approach, the precautionary principal is critical.
Moving forward, scenario exploration with multivariate SSR

can be applied to understand relationships between two (or
more) dynamically interacting variables. Here, we focused on the
case of abundance and temperature. It would also be possible to
use catch or abundance of another species as the second variable
and explore the ecological impact of harvesting one stock on
another. Demonstrating the feasibility of using SSR in a multi-
species context for a particular fishery is an important potential
capability of these methods that remains to be shown.
Given that climate change and overfishing are dual threats to

many marine species, it is critical to consider environmental con-
ditions when formulating management strategies. Our analysis with
multivariate SSR illustrates the value of explicitly considering com-
plex dynamics in population responses to environmental forcing.For
Pacific sardine, there is a clear dependence on the physical envi-
ronment that can be captured using available, broad-scale indicators
of conditions in the CCE. These general methods can offer imme-
diate insight into environmental forcing of species with long time
series and suggest a promising avenue of research into operational
schemes for implementing ecosystem-based management.

Materials and Methods
Variable Identification. We compare the forecasting skill of the univariate
state space [X(t), X(t−1), . . ., X(t−(E−1))] and the multivariate state space
[X(t), X(t−1), . . ., X(t−(E−1)), Y(t−d)], where E is the optimal univariate em-
bedding dimension (SI Text) and d is the lag of the environmental forcing.
We then evaluate the forecast skill using the correlation coefficient ρ be-
tween observed and predicted values, and the relevant quantity for iden-
tifying variables is ΔF = ρmulti − ρuni. A physical variable is considered relevant
if ΔF is significantly greater than 0. To test significance, we use the Ebisuzaki
randomization procedure to shuffle the environmental time series values
while preserving the spectrum (30); this destroys any temporal relationship
with the biological time series. For our analysis of Pacific sardine, we com-
pute ρmulti for 500 randomizations of each environmental variable to pro-
duce null distributions for ΔF. Note that each environmental variable thus
has its own null distribution.

Forecast Comparison. To explicitly investigate state dependence in the in-
fluence of temperature on sardine, we compare three S-map forecasts of the
Pacific sardine ichthyoplankton. S-maps requires two parameters: the em-
bedding dimensions, E (number of lags to use for forecasts), and the non-
linear tuning parameter, θ. For simplicity, we restrict all three models to use
the same number of univariate lags (lags of sardine), but the multivariate
models also includes SIO pier SST (averaged over the previous 3 y) as an
additional dimension. As is typically done for S-map analysis (20), we use
simplex projection to determine E (the optimal number of univariate lags)
over the range 1–8. For the linear models, θ = 0. For the nonlinear model, we
must also fit 0 < θ < 10.

All forecasts were made out-of-sample. We restricted our forecasts to the
22 points in the time series that have eight consecutive lags. So for each target
point, we find the E that minimizes the mean absolute error (MAE) of
forecasts using univariate simplex projection on the remaining 21 points. We
then find θ over the range [0, 10] that minimizes the MAE of multivariate
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Fig. 4. Effect of warming and cooling on sardine
population calculated using scenario exploration.
Using the multivariate embedding based on lags of
sardine abundance and SIO pier SST (Table 1), we
explore the effect of perturbing the historical tem-
peratures (averaged over 3 y) by ΔT = ± 0.5σSST on
sardine abundance in the following year. The his-
torical time series is shown as a black dashed line.
Multivariate SSR forecasts based on historical tem-
peratures (yellow circles), warming by ΔT = +0.5σSST
(red triangles), and cooling by ΔT = −0.5σSST (blue
triangles) are shown.
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Fig. 5. Model illustration of how simultaneous scenario exploration over
temperature and fishing mortality might hypothetically be used in man-
agement. The effect of fishing mortality F on future biomass S(t+1) is plotted
for three temperature scenarios: T increases by 0.5σT (red), remains constant
(green), or decreases by 0.5σT (blue). Even with just a 50-y time series, mul-
tivariate SSR predictions (filled squares) closely match the model calculations
(dotted lines).
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S-map forecasts using cross-validation over the remaining 21 points. Finally,
we use these parameters to forecast the target point out-of-sample.

Model Examples. The most basic Ricker model only shows nonlinear dynamics
(as demonstrated for Pacific sardine in Figs. S1 and S2) at values of the
growth parameter, r, that are considerably higher than those usually fit in
management models. However, when the species dynamics are influenced
by process error, nonlinear dynamics arise at considerably lower values of r
(31). Here, we include process error as additive with the growth rate, giving

Sðt + 1Þ= SðtÞexp½ðr + «ðtÞÞð1− SðtÞÞ�expðψTðtÞÞ; [1]

where «(t) is a normally distributed random variable with mean(«) = 0 and
SD(«) = 0.2. The temperature T(t) was modeled as red noise by applying a
10-y averaging window to white noise. For Fig. 2A, we set r = 2 and ψ = 0.3.

Nonlinear dynamics can also arise in the Ricker model when the inter-
actions between multiple species are considered. Thus, we also used the
following three-species extension of the Ricker model:

Siðt + 1Þ= SiðtÞexp
"
ri
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for i = (1,2,3). Note that the growth rates ri were drawn randomly from the
interval [1.5, 2.5] and the nondiagonal elements of the interaction matrix α
were drawn randomly from [0, 0.5].

For Fig. 5 we include a term for fishing mortality, F, in Eq. 1 as follows:

Sðt + 1Þ= SðtÞexp½ðr + «ðtÞÞð1− SðtÞÞ− FðtÞ�expðψTðtÞÞ; [3]

where F(t) is modeled as a uniformly distributed random variable over the
range [0, 0.3]. As in Fig. 2A, we set r = 2 and ψ = 0.3. To explore how
temperature conditions change the effect of harvesting on the population,
we did scenario exploration with the multivariate embedding [S(t), S(t−1),

S(t−2), S(t−3), T(t), F(t)]. The three temperature scenarios we illustrate are
T(t) = T(t−1) + 0.5σT, T(t) = T(t−1), and T(t) = T(t−1) − 0.5σT (σT is the SD of
the modeled temperature). The figure was made using a 50-y time series to
predict the behavior at time t = 50. To get the best forecasts, we use a
strongly nonlinear S-map rather than simplex projection. For simplicity, we
specified θ = 5 rather than explicitly fitting θ for this model example.

Data.Weusedfive climate indices that have been linked to biological changes
in the California Current: the SOI (32), NPI (33), PDO (34), NPGO (35), and
Multivariate El Niño/Southern Oscillation Index (36). We also used daily
temperature data from the SIO Pier in La Jolla, CA and the City of Newport
Beach Pier in Newport Beach, CA (http://shorestation.ucsd.edu/data/index_
data.html). For the SIO Pier, we used both surface (0 m) and bottom (5 m)
temperatures. Finally, we used an index for SST in the Southern California
Bight based on National Oceanic and Atmospheric Administration Extended
Reconstructed Sea Surface Temperature v3 analysis (www.esrl.noaa.gov/psd/)
averaged over four contiguous 2° × 2° areas, following McClatchie et al. (11).
All environmental indicators were averaged over a 3-y window and nor-
malized to match the original analysis (18), but not first-differenced. For
time series with daily resolution, this meant a straight daily average. For the
other time series, the average was taken over monthly values.

Time series for S. sagax were derived from the CalCOFI ichthyoplankton
surveys as in Hsieh (5) from 1950 to 2007. CalCOFI ichthyoplankton abun-
dance provides an index of adult spawning stock biomass (37). For the
normalized first differences of the sardine ichthyoplankton data, we de-
termined the best embedding dimension to be E = 3 (SI Text).
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