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Here I attempt to provide qualitative insight into the structure of natural
communities through an investigation of regularities in species abundance rela-
tions. In particular, I aim to show that the ubiquitous canonical lognormal distri-
bution of Preston (1962) and the biogeographical species-area constant, z = 1/4
{MacArthur and Wilson 1967), are not mathematical artifacts as has been previ-
ously suggested (Connor and McCoy 1979; May 1973), but can reflect a broad and
very simple underlying form of community organization.

Few propositions in ecology have as much empirical support as Preston’s (1962)
canonical lognormal hypothesis of species abundance (fig. 1). This statistical
abundance distribution has been observed for a diverse array of organisms in-
cluding diatoms (Patrick 1968; Patrick et al. 1954), soil arthropods (Hairston and
Byers 1954), lepidoptera, birds, and mammal faunas (Preston 1962), and for areas
ranging in size from diatometer slides to entire continents. It is the general rule for
collections with large numbers of taxonomically related species, and has special
importance for the theory of island biogeography (MacArthur and Wilson 1967)
since it can generate the familar species-area constant, z == 1/4, for the relation,
§ = cA* where § and A are species count and area, respectively, and ¢ and z are
constants. (May [1975] offers the clearest derivation of this relationship.) Re-
peated investigations show that when z is treated as a fitted constant, it often
agrees with the theoretically derived value, z = 1/4, which rests directly on the
canonical hypothesis (see Preston 1962; MacArthur and Wilson 1967; May 1975;
Connor and McCoy 1979 for a catalogue of examples).

By convention, a lognormal species curve is canonical if the parameter y has a
constant value of 1, where v is the ratio of the position of the individual’s curve
mode, Ry, to the upper truncation point of species curve, Ry, (fig. 1). This is
essentially an empirical relationship deriving from the observation that R, and
Raax have a tendency to coincide. Notice that when y = [, the independent
variables of the general lognormal distribution become coupled to vield a specific
one-parametey family of lognormal curves. For example, the specific coupling
between species count, §, and the variance of the lognormal, o2, can be written
approximately as

S = o Va2 exp {w] (1)
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Fia. 1.—The canonical lognormal distribution for an ensemble of 178 species (after Preston
1962). By convention, the x-axis is scaled as logarithmic (hase 7) abundance classes or
“octaves” of individuals/species, adjusted to have a mean of zero. The species curve denotes
the number of species in each octave and the individual's curve shows the number of
individuals in each abundance class. This particular distribution is canonical because the
mode of the [ndividual's curve, R, coincides with the upper truncation point of the species
curve, Ry, (.e., ¥ = RyRn,, = 1. Setting ¥ = 1 couples species count and variance in a
specific way (see fig, 2).

(after eq. [1A]). This equation contains the same information as the phenom-
enological rule ¥y = 1 and is perhaps more meaningful since it shows that under
the canonical hypothesis, a large variance in the distribution accompanies a large
species count. In the general lognormal distribution, on the other hand, these
two parameters are completely independent. The canonical hypothesis, therefore,
describes a specific positive coupling between the number of species contained
under the distribution and the size of its variance.

In view of the importance and predictive success of this relationship, especially
in the species-area context, it is puzzling that little serious effort has been made
toward a theoretical justification. Connor and McCoy (1979) have tried to explain
the island biogeographic constant, z = 1/4, as an artifact of linear regression. They
arguethat z, which in practice is reckoned from the slope of a linear regression,
should behave in a null model as the product of two uniform (0, 1) random
variables, i.e., z = p(a,/o,) where the correlation coefficient ( p) and the ratio of
the standard deviations of the independent and dependent variables (o, /o) are
uniform on the interval (0, 1). This treatment addresses the species-area relation
out of the context of its canonical lognormal underpinnings. Although the expec-
tation of their null model approaches z = 1/4, the predicted distribution of z values
does not agree with the distribution observed. Rather, using the empirical results
that they present, one is forced to reject the null mode] at the 99% level (Sugihara,
in press), leading to the conclusion that z = 1/4 is not an artifact of the regression
system.

An attempt at a more complete explanation, aiming directly at Preston’s can-
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F1¢, 2.—A graphical illustration of the validity of the canonical hypothesis, ¥ = 1, for an

arbitrary set of data on birds, moths {(Preston 1948, 1962} gastropods (Kohn 1959}, land plants
{Oosting 1948}, and diatoms (Patrick et al. 1954, Patrick 1968; Sugihara, unpublished data).
The relationship between the standard dewviation of loganthmic abundances and species count
adheres to the rule v = I, rather than to some other close value of . In this figure, the curves
for y = 1.8 and 0.2 were computed from the approximation given in eq. (1A), whereas the
canonical relationship (y = 1) was determined from vaiues given in Preston {1962).

onical lognormal hypothesis, suggests thaty = 1 is a robust consequence of general
lognormal distributions (May 1975). Although this seems reasonable in principle,
it can be shown to be insufficient. In Appendix A, for the unrestricted lognormal
curve, it is shown that -y is not confined to some close neighborhood of 1 but can
vary freely between 0 and +«=. For ensembles containing a reasonably finite
number of individuals and species, ¥ will range from 0.1 to 6.8. Hence, although
the insensitivity of this parameter must contribute to its success, the rule y =1
does not cover lognormal curves in general, and strictly speaking the canonical
hypothesis is not an artifact of lognormal distributions. Figure 2 illustrates this
result empirically. The points shown do not scatter independently as in the general
lognormal distribution, but follow the canonical trend, adhering specifically to the
relationship given by v = 1 (after Preston 1962) rather than to some other close
value of ¥ {eq. [1A]). This figure shows that Preston’s hypothesis reflects real
regularities in the shape of the distribution and cannot be explained simply as an
artifact arising from the insensitivity of y. This (s important because it means that
a full explanation of the lognormal abundance curve must also account for its
canonical form, ruling out many of the traditional explanations for lognormality
based on random multiplicative effects (see e.g., MacArthur 1960). These tradi-
tional explanations not only fail to account for the canonical variance, but more
importantly, when the multiplicative impulses are assumed to be independent one
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encounters the serious shortcoming that the variance of the distribution expands
monotonically, and without bound, with each successive moment (Aitchison and
Brown 1966). Hence, the lognormal species abundance distribution, its particular
canonical form, and the species-area constant remain without a substantial
theoretical basis.

In what follows, a model is developed which aims to explain these regularities
as a consequence of a general form of community structure involving hierarchi-
cally related species niches. This hypothesis, which is motivated by simple evo-
lutionary and ecological considerations for generating species diversity, proposes
that a minimal form of community organization involving hierarchically related
niches can explain the canonical lognormal abundance pattern. The model will be
tested first against data for small assemblages containing two and three species
and then extrapolated to account for the patterns abserved in large ensembles.
Evidence is given which suggests that niche apportionment is multidimensional
and that the canonical lognormal distribution is not simply an artifact of classi-
fication.

FOUNDATION

A clue to these regularities may be culled from the fact that they seem to apply
only to taxonomic collections having some measure of ecological homogeneity
(Preston 1962, 1980). This demonstrates that a certain degree of evolutionary or
ecological similarity is required in order for them to operate. Therefore, expla-
nations based purely on statistical artifact, although attractive for their generality,
seem less likely to apply; instead, the evidence suggests that one should seek to
understand these phenomena in terms of very general biological madels for
generating species diversity.

A reasonable approach toward understanding patterns of species abundance is
to interpret them in terms of an underlying niche structure. Indeed, because a
niche translates ultimately into numbers of organisms {(or biomass), observed
abundance patterns can offer a useful standard measure of niches, allowing
legitimate comparisons to be made between different types of species niches.

Tt is commonly believed that the relative abundance of a species is a reflection of
the amount of limiting resources it controls (Motomura 1932; MacArthur 1957
Whitiaker 1963, 1969, 1972, 1977; May 1975, 1976; Piclou 1975). Although the
classical niche apportioning theories require a uniform set of limiting resources, it
is also plausible to consider apportionment in a heterogeneous resource pool,
involving the subdivision of several different sets of niche axes. This allows the
apportionment analogy to be extended to large species ensembles which do not
possess a uniform set of governing factors.

Suppose a communal niche space (the total niche requirements of a community
in Whittaker's [1977] sense) is likened to a unit mass which has been sequentially
split up by the component species so that each fragment denotes relative species
abundance. The successive subdivisions may correspond to apportioning on dif-
ferent sets of niche axes, which could be driven by either ecological or evo-
lutionary forces. This is similar in spirit to the MacArthuyr (1957, 1960) broken-
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stick model with the important exception that breakage occurs sequentially rather
than simultaneously (Bulmer 1974; Pielou 1975). Kolmogoroff (1941) has shown
that such sequential fractures can lead asymptotically to lognormal size-frequency
distributions. The breakages themselves do not have to be random; however, the
magnitude and frequency of breakage must be independent of particle size. Thus,
for example, gravel fragments resulting from repeatedly crushing rocks often tend
ta be lognormal. Instead of smashing rocks one can imagine dividing up relative
species abundance in a way that reflects a sequentially divided niche space.
Therefore, large numbers of taxonomically related species should tend to have a
lognormal distribution of abundance.

The biological motivation for this mechanism depends principally on two prop-
ositions. First, the underlying structure of niches should be reflected in the
relative abundance pattern (Motomura 1932; MacArthur 1957; Whittaker 1965,
1969, 1972, 1977; May 1975, 1976; Pielou 1973), and second, in general, the
minimal niche structure for communities should be hierarchical. This latter propo-
sition derives from the essential differences between species niches, which allows
one to sort them into natural groups according to increasing niche similarity. Such
a pattern is illustrated, for example, in a niche overlap dendrogram (fig. 3) where
communities are sequentially subdivided into smaller and more tightly related
functional groups of species. The sequential aspect of the breakage metaphor,
therefore, corresponds to this underlying niche hierarchy, with each bifurcation
representing a break point (fig. 3). Although evolution is not necessary, it is a
sufficient condition for generating this pattern. Whittaker (1977} has proposed that
community diversity may evolve by the sequential partitioning and dispersal of
species populations in a communal niche space. To some extent, speciation itself
can be characterized as the successive carving up and elaboration of a taxon’s
niche. Such processes should lead in the end to a community structure consisting
of subdivided taxonomic guilds. This inevitable tree structure or niche hierarchy is
in fact the minimal kind of community structure since, apart from evolution, it
could arise naturally from a gradient in niche similarities.

In terms of the breakage metaphor, this situation can be described by the simple
case involving successive single fractures. Therefore, the initial unit mass is
broken randomly to produce two fragments and one of these is chosen randomly
and broken to vield the third, and so on. This process, where particles are
sequentially chosen and broken at random, is intended to reflect a hierarchical
niche pattern. According to this model, total abundance may expand or shrink
proportionally for each species or may remain constant through time (cf. Van
Valen’s [1974] red queen hypothesis or Levinton 1979). Because the sequential
aspect here corresponds to the underlying niche structure, it may be incorrect to
interpret a colonization event as the subdivision of an existing hierarchy, since an
entirely new set of relationships can be formed.

Although this model is similar in spirit to the MacAxthur broken-stick model, it
differs from it in several important respects. First, unlike MacArthur’'s model this
mechanism involves sequential rather than simultaneous random breakages. The
unit mass is split up by repeated breakage events rather than divided instantane-
ously with one hammer blow. Tt should be emphasized that simultaneous breakage
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Fig. 3.—A hypothetical niche averlap dendrogram demonsirating hierarchical (minrimal)
community structure. In the sequential breakage model, each bifurcation in the underlying
niche structure corresponds to 2 subdivision of the communal biomass (abundance).

does not lead to a lognormal distribution but generates a pattern which is more
equitable than the one produced by sequential breakage. Second, as will be
explained further in the next section, the present model incorporates complex
random breakages involving the translation of several niche axes into abundance.
This differs from the broken-stick model which involves the uniform breakage of a
single resource axis.

Thus, this model not only leads to lognormal distributions but it is also intui-
tively consistent with evolutionary and ecological conditions for generating
species diversity. Encouragingly, it also agrees, at Jeast qualitatively, with Pres-
ton’s canonical relationship as variance will tend to grow with the convolution of
additional species to the community.

MULTIDIMENSIONAL BREAKAGE

Consider first the two-species case involving a single random breakage. At this
stage, there is no difference between sequential and simultaneous breakage;
therefore, expected proportional abundances can be computed from MacArthur’s
formula

1< 1

E0) = § 2 s T @
where E(p,) is the expected fraction of the i/ th most abundant species and S is the
number of species in the ensemble. For assemblages with two species, the domi-
nant member will assume values anywhere from 0.5 to 1.0 with uniform probabil-
ity: and the expectation given by equation (2) is simply the midpoint or 0.75. As
Pielou (1975) pointed out, uniform breakage means that all fractional abundances
are equally likely: therefore it is essentially meaningless to seek individual exam-
ples in nature which agree with equation (2}. This casts a shadow over more than a
decade of such attempts {(Deevey 1969; King 1964; Goulden 1969; Kohn 1939,
Longuet-Higgins 1971; MacArthur 1957, 1960; Tramer 1969; Tsukada 1972).
Rather, to test the hypothesis it is necessary to consider a distribution of values
taken from many assemblages. Swingle's (1950} studies of bass—bluegill combi-
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Fia. 4. —A test of one-dimensional breakage (MacArthur 1957, 1960) versus multdimen-
sional breakage for two-species assemblages of barnacles and fish. This figure shows that the
relative abundance of the most abundant species of fish {in biomass) and barnacles (in
numbers of individuals) is not distributed uniformly but appears to cluster about the expected
figure of (.75. In both cases, the hypothesis of uniform breakage on one niche dimension is
rejected at the 95% level.

nations are ideally suited for this as they offer many replicate data from experi-
mental ponds which have come to equilibrium over periods of 2 to 30 yr. There
was no sampling error in these studies because the ponds were either completely
drained or poisoned, and total biomass could be used to calculate frequencies (fig.
4). Dayton's (1971} barnacle data, although less well suited, are also used because
they contain a good number of replicates, and his total exclusion cages ensure that
interaction is limited to only two species. These data, however, only represent
barnacle associations in the first 3 to 5 mo after settlement, thus the temporal
definition of community may be somewhat artificial. Nonetheless, there were no
consistent shifts in proportional frequency (calculated from numbers of individu-
als) at most localities during this period. These were the only studies of two-
species associations that I encountered in an arbitrary survey of the literature
which had data appropriate for this analysis.

Data for the relative abundance of the dominant species of fish and barnacle are
ploited in figure 4. The distributions for the less abundant members have been
omitted as they are simply mirror images of the anes shown. The important result
is that, rather than a uniform distribution, which is predicted if a single limiting
factor is divided up randemly, there is a clear tendency in both cases for values to
cluster about the expected figure of 0.75. The hypothesis of uniform breakage on a
single limiting factor is rejected for both fish and barnacles at the 95% level.

Whereas individual breakages generate a flat distribution of proportions, com-
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posite breakages averaged over several dimensions can explain clustering about
the mean. For example, although single throws of a fair die turn up all outcomes
uniformly, pairs of throws averaged will accumulate around the expected figure of
3.5. The clustering will tighten as each point includes mare throws, rising in the
limit to a normal distribution with a shrinking variance. In a similar manner, the
relative abundance of a species pair can be reckoned as the mean of random
breakages on several dumensions, representing different resources or discrete
environmental regimes which the organisms divide up. Accordingly, the fractional
abundance, p,, for k-dimensional apportioning between two species is a simple
expectation,

4
ps = Z Xy Prs (3)
r=1

(where & is a weighting factor such that Za = 1 and p, ; is the relative fraction that
species s gets on dimension r), and the distribution of p, will modulate around the
mean value.

If, for simplicity, two equally important factors determine fractional abundance,
then there are three possibilities to consider. Case 1. If the dominant species tends
to get the larger share of both factors, then this is roughly equivalent to averaging
twa uniform fractures in the interval [0.5,1). The distribution will be triangular
around a mean value of 0.75 {fig. 54). Case 2. On the other hand, the ranked
shares may be negatively correlated so that the species which gets a larger fraction
on one dimension gets the smaller part of the other. In this case, a narrow
triangular distribution centered about 0.5 will result (fig. 5B). Case 3. Intermediate
between these two extremes, the rank on either dimension may be completely
independent yielding a wide triangular distribution about 0.5 (fig. 5C). Data for
both fish and barnacles are most consistent with case 1, and the agreement is
especially good (P < .05) for the bass—bluegill combinations. It is not surprising
that the more abundant species should get the larger share of several resources.
Unfortunately, one cannot say that only twa factors are involved since a similar
degree of central tendency is realized with many more factors which are differ-
entially, rather than equally, important.

Variation about the expected value of 0.75 may be further reduced if samples
are large and heterogeneous so that each homogeneous lacal area is roughly an
independent broken-stick variable. Large samples which encompass more area are
simply an average of these local values, and the relative proportions should
therefore cluster more tightly around the mean. This is not likely to be important,
however, in the fish and barnacle data, because the experimental ponds and the
small exclusion cages are essentially homogeneous.

It should be mentioned that one cannot explain clustering around the mean
value in terms of sampling along a gradient. For example, in a hypothetical
transect, if species A varies in abundance linearly from 0 to K and B goes from K
to 0, random sampling along this interval will yield a flat distribution of propor-
tions rather than a modal one. Similarly, a stochastic reformulation of generalized
competition models having random coefficients will not generate the abserved
clustering of abundances (G. Sugihara and L. Nunney, in prep.). However,



778 THE AMERICAN NATURALIST

A
o
o
g
3 B
o
&
b
T 1
C
F T 1
5 i 1.0

Propartional Abundance

F1G. 5.—Three distinct abundance distributions are possible if two equally important
factors determine fractional abundance. A, Case {. If the dominant species gets the larger
share of both factors this is equivalent to averaging two uniform variables in the interval [0.5,
1). B, Case 2. If the niche dimensions are negatively cortrelated so that the species which gets
the larger share of one dimension, also gets the smaller share of the other, then this is
equivalent to averaging twa uniform variahles, with one in the interval (0, 0.5] and the other in
the interval (0.5, 1). C, Case 3. When the two dimensions are completely independent, this
can be represented as the average of two uniform variables in (0, 1).

recognizing the possibility of an alternative recondite mechanism, the develop-
ment that follows will depend only on the empirical fact of the pattern observed in
the two-species case and only indirectly on its theoretical underpinnings.

INSTANTANEOUS VERSUS SEQUENTIAL BREAKAGE

Results abserved for the two-species case will now be extended to predict ratios
for assemblages with three species. Taking case 1 as the empirically validated rule
for breakage, figure 6 presents the two alternative ways of generating ranked
expectations depending on whether the larger or smaller fraction is broken the
second time. The method used to calculate the expected sizes of the fractions
generated for each breakage pathway is given in Appendix B. The final ranked
expectation is simply the average of the ranked expectations for the two possible
pathways,

In table 1, I compare the predictions of the sequential hypothesis and MacAr-
thur's instantaneous breakage model for an arbitrary collection of three-species
associations including molluses {Fuller 1972), trees (Keever 1973; Jackson and
Faller 1973), fish (Swingle 1950), and barmacles (Dayton 1971). Notice that these
data do not represent single assemblages, but are expectations averaged over
numerous collections. Although the sequential model fits more closely (£ = .05)
than the MacArthur model (P = .40}, the difference is not compelling. A more
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Breakage Breakage
Sequence Sequence

568 .284 148 715 188 .083

FiG. §. —Two possible breakage sequences for generating proportional abundances for a
three-species assemblage. The values at the bottom of each sequence are the expected
proportional sizes (see Appendix B for the method of caleulation). The solid arrows in
sequence A Tepresent the mast probable sequence, and the dashed arrows indicate other
possible arrangements depending on the relative sizes that pieces break into with a second
breakage.

TABLE 1

CoMPARISON OF THE BROKEN-STICK AND SEQUENTIAL BREARAGE MODELS

RANKED PROPORTIONAL ABUNDANCE

SouRrcE P P2 Pa ¥
MacArthur braken-stick ........... 611 21 111 1.02
Sequential hypothesis  ..... ........ 659 235 108 10
Observed data . ...... ... ... ... ... 675 227 095

{Molluscs, trees,
barnacles, fish)
n =57

NoTE.—» = 57 is the total number of three-species assemblages used in the caleulations. p; is the
proportional abundance of the ith most abundant species. Values for the sequential hypothesis were
obtained by averaging the expected values for the two possible breakage pathways (fig. 6).

powerful test was not attempted because the exact forms of the distributions are
unknowtn.

Better evidence for sequential breakage comes from the observation of frequen-
cies within a single community. If the breakage path is ecologically meaningful, or
reflects the evolutionary partitioning of niches, then a given type of community
should follow ane of the twa pathways shown in figure 6. Of the results surveyed,
only the studies on fish (Swingle 1950), barnacles (Dayton 1971), and trees
{Jackson and Faller 1973) offered a sufficient number of data to test this. These
values, shown in table 2, appear to agree nicely with the sequential hypothesis:
The conifers of Wizard Island follow breakage sequence A, while fish and barna-
cles follow B. Not only are the expected proportions in close accord with the
model, but more importantly the observed variances for these p;'s are almost
precisely those which would be generated by sequential breakage. For breakage
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TABLE 2

DaTa FROM TABLE | SORTED INTO SEQUENCES A aND B FroM FIGURE 6

RANKED PROPORTIONAL ABUNDANCE

SouURCE 21 Do Py
Breakage
Sequence
A L Model prediction 568 284 148
{approximate) a? = 011 a? = 006 at = 004
Trees (Wizard
Island) 566 300 144
n=15 at = 010 gt = .08 a? = .006
Breakage
Sequence
B .............. Madel prediction 750 .188 063
{exact) a? = 004 a? = .001
Barnacles 758 165 077
=18 a? = 006 ot = 004 gt = 002
Fish 757 174 .069
n =12 a? = 006 at = 004 g? = .002

NaTE.—Model variznces predicted for sequence A are approximate since they assume that the
proportions for each successive breakage were chasen from a triangular distribution {cf. fig. 4). This
assumption was not necessary in sequence B where it was possible ta use the observed variance of g,
(i.e., the observed variance for a single breakage = .006) to predict the variances of p, and p, (both
resulting from a second breakage).

sequences B (fig. 6) the variances of p, and p, are conditional values predicted for
the fractional abundances resulting from a second breakage. In this sequence, the
larger piece, p,, results from a first breakage and the two smaller ones are
produced by a second breakage. From the abserved variance in the larger fraction
(first breakage) one can calculate the conditional variances for the two smaller
pieces (see Appendix C for method of calculation). This conditional argument,
however, does not apply to sequence A where one cannot know the exact
variance of the fractions resulting from a first breakage. In this sequence, invalv-
ing the breakage of the larger segment, none of the p,'s will result purely from a
single fracture. For example, the largest segments, which are averaged to deter-
mine p,, may have resulted from either a first or second breakage (fig. 6). There-
fore it is necessary to approximate the variances for the ranked proportions in this
sequence by assuming that the breakage fractions were chosen from a triangular
distribution as observed in the two-species case (Appendix B).

GENERATION OF THE CANONICAL LOGNORMAL
AND THE SPECIES-AREA CONSTANT

Because the number of possible breakage sequences is (§ — 1)1, it is unreason-
able to discuss specific pathways for larger assemblages. Instead, the relationship
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TABLE }

COMPARISON OF THE SEQUENTIAL BREAKAGE MODEL WITH
THE CaNaNICAL LoaNoRMAL HYPOTHESIS

SEQUENTIAL BREAKAGE

CANONICAL HypPoTHESIS
HYPOTHESIS
s o E(o) VAR(e)
A T 2.97 2.80 4509
50 1.y 3.23 4714
100 .. 3.72 1.6l 4318
00 ... 4.05 31.97 .4106
400 ..ol 4.36 4.32 3854
KOO ... 4.66 4.63 3522
1L,O0G oL 4.75 4.73 3368
7.0
6.0 T

5.0

4.0

3.0+

« Birds

o Moths
2.0 o Gastropods
= Plants
= Diatoms
1.0
200 400 §00

§

Fra. 7.—Graphical evidence for the sequential breakage hypothesis for an arbitrary as-
sartment of taxonomic collections {see fig. 1). The solid line and errar bars represent the mean
and two standard deviations of the mean predicted by the sequential breakage model. The
dashed line represents the trend generated by hiologically trivial or arbitrary sequential
breakages, i.e., where the successive breakage fractions are chosen uniformly from the
interval (0,1). This latter trend is identified with the null hypothesis that species are artifacts
of classification in the naominalist sense.

between the standard deviation of logarithmic abundances, o, and species count,
is examined with the aim of determining whether the coupling of these parameters
agrees with the empirically based canonical relationship.

The results of a numerical simulation of the sequential breakage model are
compared in table 3 to the canonical hypothesis. The correspondence is surpris-
ingly good. An even stronger statement is made in figure 7 which demonstrates an
almost perfect match between the variance in the model and the scatter of points
found in nature. These numerical results are generated by assuming that the
breakage fractions are precisely (.75, 0.25, which is roughly what should be
expected if the collections are large and heterogeneous, and if pairwise rank is
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preserved, i.e., if species A is more abundant than B in all independent localities
where they occur together. Under these circumstances, because of the modulating
effect of sample size, the values should peak into a spike around the expected
figure. Virtually identical results can be obtained, however, by assuming that
some breakages are variable as in the two-species case, and that pairwise rank is
not always maintained. This can be portrayed approximately as an intergrading
mixture of point fractures (0.75, 0.25, and 0.5, 0.5) and breakage distributions
shown in figures 5A and 5C to yield a distribution with a peak roughly midway
between 0.5 and 0.75. The relationship between § and & generated by this regime
is virtually indistinguishable from that presented in table 3. Both of these pos-
sibilities are plausible extrapolations of the two- and three-species cases previ-
ously observed. On the other hand, if one arbitrarily assumes that the successive
breakages are uniform in the interval (0,1), then the canonical relationship is not
obtained (fig. 7). This rules out an alternative and biologically trivial interpretation
of breakage proposed by Aitchison and Brown (1967) in which arbitrary hierarchi-
cal systems of classification are conceived of as a sequential breakage operation.
Clearly then, the canonical lognormal distribution cannot be explained as an
artifact of classification in the nominalist sense, and species do not represent
arbitrary subdivisions of biomass.

These results demonstrate that a reasonable extension of the two- and three-
species cases can generate the ubiquitous canonical lognormal distribution,
whereas arbitrary sequential breakages will not account for the relationship.
Furthermore, because the model generates the canonical lognormal distribution, it
can also explain the Preston-MacArthur-Wilson species-area constant z = 1/4. It
is surprising and encouraging that a simple induction of the patterns observed in
small ensembles can account so well for such large-order regularities, and reas-
suring that the generality of this hypothesis corresponds to the ubiquity of the
patterns which it aims to explain.

CONCLUDING REMARKS

The evidence suggests that the canonical lognormal abundance pattern and the
species-area constant may be most simply explained as consequences of a
hierarchically structured communal niche. This model is admittedly phenomeno-
logical; however in view of the regularities addressed, this is perhaps inevitable.
It is intended strategically to capture the first-order effects of the most minimal
kind of community structure, and exactly how literally it may be interpreted
remains to be seen.

In constructing my argument the results of the two- and three-species cases
were induced to make predictions about the multispecies case. If the hypothesis of
minimal community structure is correct then it should be possible to recover
roughly the pattern observed for two species from a large ensemble by construct-
ing a dendrogram of niche overlaps and considering each bifurcation as the
two-species case. If the area sampled is large enough, then the distribution of
proportions thus obtained should be roughly triangular with a peak midway
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between 0.5 and 0.75. Therefore, an independent test of the hypothesis may be
accomplished with a dendrogram containing the abundance of each species.

For the Wizard Island trees (table 2), although the breakage path was con-
served, the rank for each species varied in different localities. Because these
associations were from a range of altitudes and soil conditions, the lack of a fixed
ordering is not surprising, and demonstrates that niche subdivision is not unique
for a particular species ensemble and depends on the specific environmental
context. The species rank-list for barnacles supports this idea: For tide levels
under 1.3 m, the rank-list is Balanus glandula > B. cariosus > Cthamalus dalli,
whereas at stations higher in the intertidal, C. dafli tends to predominate over B.
cariosus. On the other hand, Swingle's fish associations, all from similar pond
environments, tend to maintain their ordering. These examples align most con-
sistently with ecological forces determining breakage, but this should not reduce
the plausibility of evolutionary niche subdivision. It seems likely that the principle
fractures which divide a large community into major functional groups will reflect
evolutionary lines of niche apportionment, and that finer partitioning, within
smaller more closely related species clusters, will be guided more strongly by
ecological forces.

It is interesting that the breakage pathway for a given set of species was
conserved (table 2). Jackson and Faller's trees cleaved the most abundant species
{sequence A) while Swingle’s fish and Dayton’'s barnacles cleaved the least abun-
dant one (sequence B). One possible explanation, in terms of competition, is that
among trees the incentive for sharing a large resource pool may have outweighed
the disadvantage of competing with an abundant species, whereas the opposite
may have held for fish and barnacles. The full ecological significance of this
observed invariance in breakage pathway may offer interesting biological insights
and deserves further consideration.

SUMMARY

Recent proposals that the canonical lognormal distribution and the resulting
species-area constant, z = 1/4, are artifacts of the general lognormal curve and
regression techniques, are shown to be inadequate. An alternative hypothesis is
suggested which accounts for these regularities in terms of a hierarchical com-
munity structure represented by a sequentially divided niche space. This hierar-
chical pattern, which can be considered to be a minimal form of community
structure, derives from evolutionary and ecological considerations for generating
species diversity, and is shown to account for the observed abundance structures
of small ensembles as well as large natural communities. Evidence is presented
which implies that niche apportionment between species may involve the random
division of more than one resource, and an interesting invariance in the pattern of
apportionment is observed for assemblages with three species. The possibility that
the canonical lognormal distribution is a conceptual artifact resulting from arbi-
trary systems of classification is considered and shown to be false. Aside from its
intuitive appeal, the model presented should be of interest because it offers
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explanations of two ubiquitous patterns in nature: the canonical lognormal and the
resuiting species-area constant.
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APPENDIX A

This section contains a counterargument to the proposition that ¥ = | is a general
property of lognormal distributions.
Following May ({975):

S = total number of species in the lognormal assemblage.

J = total number of individuals/number of individuals of the rarest species.

a = 1/V2g® where o? is the variance of the lognormal species curve.

v = RuylRnax such that if the species curve mode is at zero, Ry = the position of the
individual's curve mode, and R ,,, = the position of the upper truncation point of the
species curve.

Upper and lower limits for y are obtained conveniently from the relation
In2

y= R (1A)
2a3(In K5}

where K = 2a/V'm. This is similar to May's eq. (3.8) with the exception that the area
contained under the upper and lower limbs of the distribution is assumed to sum to 1 (after
Preston 1962) rather than 2. Holding 4 fixed, it follows that v — ¢ as .§ — ., Becausea > (0
and In K§ = 0, y is strictly positive. Hence, yuin = 0 is 2 greatest lower hound. An upper
limit for + is obtained from eq. (1A) simply by setting § = ¢/24 where ¢ > Vr, and allowing
a — 0, whence, y — oo,

Collecting these remarks yields the following:

0 < y<m (2A)

Hence, ¥ = 1 is not a necessary property of the general lognormal.

It is now reasonable to ask whether restricting § and J to realistic limits leads to
lognormal distributions with ¥ = 1. For 50 < § < 10® and 10* < J < 10" the corresponding
range for v is roughly

0.1 <vy< 6.8 (3A)

where (3A) follows from equation (1A), and the relations: InJ = A* (1 + v)* fory < |, and,
In J = 4yA® for v = 1, where A = In KS (May 1975). Therefore, the property y = 1
is not inevitable for lognormal species frequency curves, even within reasonable limits
for § and J. i

APPENDIX B

In sequence B, which involves the division of the smaller fragment (fig. 6) the ranked
expectations are easily computed as follows:
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E{p) =75
E(p,} = (.25) (.75) = . 1873
Efpay = (.25} (.25) = 0625

This simple computation is possible because there is no ambiguity in the rank ordering of
fractions in relation to their sequence of generation. That is, g, is always generated by a
single breakage and p, and p; always involve a second breakage. The situation is not as
clear cut in sequence A, however, where the larger piece is divided a second time. To see
this, [et ¥ | and x, be the larger fractions used in the first and second breakages, respectively,
and let (1 — x,) and (1 — x,} represent the smaller fractions. Because it is the larger piece
from the first breakage that is divided, three cases must be considered:

(L=} >xx = al — xa)
) x> (1 — xg) 2yl — xa)
B xpe T xfl - xg) > (1 xy)

The terms in each of these inequalities correspond to p,, pa, and p,. One can see the
ambiguity in p ,, for example, since It can involve pieces resulting from a first ([ — x ) and/or
second (x.x,} breakage. Therefore, in calculating the ranked expectations and variances for
sequence A the above three cases must be considered. The expectations may be computed
as follows:

T
T alery
E(py) =L L (1 — x)dFx ,dFx,

I 1
+ f J-'— ¥ dFx,dFx,,

Lira

1

L [E)
E(pa) = J; f XxadFx dFx,

1
¥

I
[ QY
+ J; J._l(l — x)dFxdFx,;

L+za

1~
+ J. J’; xl(l - XQ_)CI'FXIdFXQ.
ER

| ot
E(pg) = L L x4l — x)dFx dFx,
1

L 21y
+J; f_t_xl(l — xa)dFx dFx,

I+.ra

1
+f J‘;(l — x )dFx dFx,,
¥

1
2—rag’

where Fx, and Fx, are the cumulative densities of the triangular distribution on the interval
(4, 1]. The calculation of variances fellows trivially from the relations above.
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APPENDIX C

This section illustrates a method for computing the conditional variances for fractions
resulting from a second breakage in sequence B (see fig. 6. As a specific example, we will
compute the variance of p, from breakage path B (see fig. 5). This is the larger fraction
resulting from the second breakage.

Lety = (i — x,) denote the size of the smallest fraction from the first breakage, and p, =
the size of the largest piece from the second fracture. The distribution of pi, f{p.), is
canditional on the distribution of ¥, and one can write

flpd) = [ flpa|y) o)y dy. (1B)

Thence, the variance of p,, V(p,), is simply the sum of the expectation of the conditional
variance plus the variance of the conditional expectation,

Vip,) = E[V(.Uzb’)} + V[E(PQ!J’)]‘ (2B)

If V(y} is observed to have a value of a, then V{p,|y} = ay? and E(p,ly) = (3/4)y,
whereupon

Vip,) = (9/16)a + aE(y?). (3B)

Because, in general, V(¢) = E(t?) — E{¢t)?%, therefore E(y%) = a{a + 1/16) and equation (3B)
becomes V{p,) = ala + 5/8). For example, in the fish data ¢ = .006 and Vip,) = .004.
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