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Introduction to Empirical Dynamics

Every	one	gives	lipservice	to	nonlinearity,	but	few	actually	acknowledge	it	or	truly	understand	it.	

I	would	like	to	look	at	some	pedagogical	points	that	are	o<en	swept	under	the	rug…	but	I	suggest	they	actually	
redefine	how	we	should	study	these	systems

An Introduction to Empirical Dynamics: 

An Inductive Data-Driven Approach

My	aim	here	will	be	to	speak	to	a	par@cular	perspec@ve	that	may	be	of	special	relevance	as	we	
move	away	from	simple	20th	century	reduc@onist	toy	models	based	on	fundamental	principles,	
toward	trying	to	understand	how	messy	natural	systems	behave.	For	example,	while	we	can	easily	
write	down	an	accurate	equa@on	for	diffusion	of	gases	in	a	test	tube,	modeling	oxygen	
concentra@ons	at	depth	in	a	large	lake	(where	biology,	complex	chemistry	and	physical	currents	
intervene)	is	imprac@cal	with	explicit	equa@ons.	Empirical	models,	which	infer	paIerns	and	
associa@ons	from	the	data	(instead	of	using	hypothesized	equa@ons),	represent	an	alterna@ve	and	
highly	flexible	approach.	

	All	this	is	being	made	possible	by	the	era	of	Big	Data.	21st	century	holis@c	science	is	being	enabled	
by	a	boon	in	available	data,	and	EDM	is	a	useful	approach	for	data	explora@on.	The	math	itself	is	
not	especially	challenging,	however	the	resonance	of	understanding	that	can	be	achieved	with	a	
deeper	understanding	of	the	implica@ons	of	simple	classical	assump@ons	like	equilibrium,	

Two key points of emphasis for 
inductive data-science are as follows:

1. Detecting causation to uncover mechanism 
in nonlinear dynamic systems 

2. Forecasting as a rigorous way to validate 
understanding 

 

Two	key	points	of	emphasis	are:		
1.	 Detec@ng	causa@on	to	uncover	mechanism	in	natural	nonlinear	dynamic	
systems	
2.	 Forecas@ng	as	a	rigorous	way	to	validate	understanding.	



“Correlation versus Causation”

Two main elements:

1. The fact that nature is dynamic
-temporal sequence matters

2. The fact that nature is nonlinear
- context/connectivity matters

1) The	fact	the	nature	is	dynamic	-	temporal	sequence	maIers	

Nature	is	best	understood	as	a	movie	rather	than	a	snapshot.	

2)			The	fact	that	nature	is	nonlinear		
	Meaning	it	consists	of	interdependent	parts…that	are	nonseparable	
	 –	context	maIers	
It	cant’t	be	studied	as	independent	pieces.	Rather	each	piece	needs	to	be	
studied	in	the	context	surrounding	it.	
	 Let’s	start	with	an	example….	
*stop*

Simple 2-Species 
Logistic Difference Equations

X1(t+1) = r1 X1(t) [ 1 - X1(t) -α12 X2(t) ] 

X2(t+1) = r2 X2(t) [ 1 - X2(t) - α21 X1(t) ]

these	two	variables	(eg.species	and	a	forcing	variable)	are	uncorrelated.		

However	they	are	in	fact	determinis3cally	coupled.	*click*	*click*	These	@me	
series	are	produced	from	a	simple	coupled	logis@c	difference	system.	…	an	example	
of	nonlinear	dynamics.	

A	=	[[	3.5	0.1][	0.02	3.8]]	
So	

x1(t+1)	=	x1(t)	*	(3.5	-	3.5	*	x1(t)	-	0.1	*	x2(t))	
x2(t+1)	=	x2(t)	*	(3.8	-	3.8	*	x2(t)	-	0.02	*	x1(t))	

x1(0)	=	0.2	



x2(0)	=	0.4

Bishop Berkeley:  “Correlation does not 
imply causation.” (1710)

Converse:  “Lack of correlation does not 
imply lack of causation.”

Thus	not	only	does	correla@on	not	imply	causa@on,	but	

with	simple	nonlinear	dynamics,	the	converse	is	true:	

Lack	of	correla@on	does	not	imply	lack	of	causa@on.	

Causation without Correlation

Causation

Correlation

The Realm of
Biological Systems

This	is	interes@ng	because	this	blue	disc	is	the	realm	of	biological	systems.	

*stop*	

And	within	this	realm…a	further	consequence	of	nonlinearity	demonstrated	in	the	
model	example	was	the	phenomenon	of	mirage	correla3on…	



Fall 2017 In	retrospect,	a<er	what	I	just	showed	you,	this	converse	property	should	be	well-
known,	but	apparently	it	is	not.	It	contradicts	a	currently	held	view	that	correla@on	
is	a	“necessary”	condi@on	for	causa@on.	
Tu#e	is	a	dis*nguished	sta*s*cian	and	poli*cal	scien*st	from	Yale

Mirage Correlation
a further consequence of nonlinear dynamics

These	ephemeral	or	mirage	correla@ons	are			“associa@ons	that	come	and	go	and	
even	switch	sign”	

This	perverse	tendency	of	nonlinear	systems	is	the	bane	of	Ecology	and	of	financial	
modeling	….	rela@onships	that	appear	then	disappear	as	soon	as	you	try	to	exploit	
them.	

Let’s	see	an	example…	

Pacific sardine productivity and SST

(McClatchie et al., 2010)data up to 1991

data up to 2008

Here	is	another	example	from	SoCal.	*click*	Using	data	up	to	1991,	a	significant	
posi@ve	rela@onship	was	found	between	sea	surface	temperature	and	sardine	
produc@on	(true	for	two	different	measurements	of	produc@vity	(recruitment)).		
This	was	reported	in	1994	and	was	subsequently	wriIen	into	the	state	law	for	
managing	harvests.	

*click*		*click*	However,	when	data	from	1992-2008	are	included	(17	addi@onal	
data	points),	the	correla@on	seemed	to	disappear	(in	both	cases),	causing	the	plan	
to	be	suspended	in	2010…	where	it	now	stands.	



Myers, 1998 
A meta-analysis of  74 environment-recruitment (fish 
productivity) correlations reported in the literature. 

• Only 28 out of 74 held to retest when data 
subsequent to the original study was added.      

(Fewer now: sardine-temperature was still successful at that time) 

     

Another	famous	example	from	fisheries-	
was	a	meta-analysis	on	74	environment-recruitment	correla@ons	that	were	reported	
in	the	literature.	These	correla@ons	were	retested	using	addi@onal	data	obtained	
subsequent	to	the	publica@on	of	each	of	the	studies	–	only	28	of	the	74	correla@ons	
remained.	   
(Certainly fewer now, since sardine-temp was among the ones that still help up at the time of Myers analysis)

Rela@onships	we	thought	we	understood	seemed	to	disappear.			This	sort	of	thing	is	
familiar	in	finance	where	rela@onships	are	uncovered	but	o<en	disappear	even	
before	we	try	to	exploit	them.	
(Species included Atlantic cod, Northern Anchovy, Sockeye salmon, Maine Lobster, and many others).

•A holistic approach for studying complex 
systems from time-series observations

• Involves the study of dynamic attractors

Empirical Dynamics
(EDM)

So,	how	to	address	this?	
The	approach	I	will	present	here	is	based	on	nonlinear	state	space	reconstruc@on	
which	I	refer	to	here	with	the	less	technical	name…	empirical	dynamics.	
EDM	is	a	holis@c	data-driven	approach	for	studying	complex	systems	from	their	
aIractors.	It	is	designed	to	address	nonlinear	issues	such	as	mirage	correla@on.	

I	am	now	going	to	play	a	brief	video	anima@on	that	will	explain	all.		(my	son	made	
this	for	me	when	he	was	a	junior	at	Columbia).	The	narra@on	is	by	Robert	May.	
**click**click**	

It is an alternative to the theoretical expedient of constancy and decomposability. 
The common assumption that natural systems are in equilibrium has legitimized reductionism and the use of 



linear methods. For example, to study dynamics —we can use local linear stability analysis.
-constancy in pairwise interactions- a picture of independence; dynamics are reduced to random motion 
around a mean. Time (sequence of events) is irrelevant

However, if we don’t make this assumption then we need to account for dynamics that exhibit nonlinear state 
dependence
-nonlinear state dependence -> interdependence
This has important implications for how to study nature (holistically), and for identifying causal drivers and 
networks.

�13

Attractor Equations

Time series are observations of motion occurring on an attractor.
A time series is an “observation function” of the dynamic mechanism 

The	main	insight	from	that	video	is	….	
to	understand	that	a	time	series	is	a	projection	or	observation	of	motion	on	an	
attractor.		Indeed	in	the	jargon	term	of	dynamical	systems	a	time	series	is	an	
“observation	function”	for	dynamics	on	the	attractor.	

Conversely,	aIractors	can	be	obtained	simply	by	re-plo:ng	the	relevant	*me	
series	data.		Construc@ng	aIractors	from	@me	series	data	is	the	basis	of	the	
Empirical	Dynamic	approach.		



X and Z are 
positively 
correlated

X and Z are 
negatively 
correlated

Changing relationships among variables give rise to mirage correlations
And	depending	on	when	they	are	viewed,	rela@onships	among	variables	can	appear	
to	change…	giving	rise	to	mirage	correla@ons	

Over	the	short	term	there	might	be	correla@ons,	but	over	the	longer	term	If	one	
were	to	study	this	system	by	plolng	randomly	sampled	values	of	X	and	Z	there	
would	be	no	correla@on.		This	problem	only	becomes	coherent	when	temporal	
sequence	is	included.	

Let’s	look	at	a	real	example.

�16

I’ll	now	play	another	short	video	that	explains	a	key	result	for	EDM,	related	to	
connec@vity	and	informa@on	sharing.

To	recap,	Takens	theorem	says	any	one	variable	contains	informa@on	about	
the	others.		This	allows	the	construc@on	of	aIractors	from	a	single	variable	
using	lags	as	proxy	coordinates.	

Construc@ng	aIractors	from	@me	series	data	is	the	basis	of	the	Empirical	
Dynamic	approach.		
-univariate	
-mulitvariate	
-mixed	embedding	

let’s	look	at	some	examples…
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Empirical Attractors
When time series have no relationship to each other, plotting them 
together as a trajectory in a multivariate state space yields a tangled 
mess. There is no sign of structure or pattern— and there shouldn’t 
be!

[[Click to show 2nd attractor]]

In contrast, when interrelated time series are plotted together, the 
trajectory forms a manifold. Here, we show three time series from 
Mono Lake, a saline lake in California with a simple food web. The 
trajectory forms a coherent pattern that we can then study to make 
predictions and gain insights into the interactions between the 
variables.

Example	Empirical	AIractors	
Fraser	Sockeye	Salmon	Returns	

Late Stuart Stellako Weaver

Early Stuart Late Shuswap Quesnel

Here	we	have	an	ecological	example:	aIractors	constructed	from	@me	series	for	
sockeye	salmon	returns	for	the	Fraser	River,	Canada.	…Again,	using	@me-lagged	
coordinates.	
	 -Each	point	represents	a	3-year	history.		
	 -Basically,	the	trajectories	run	along	consecu@ve	3-year	histories.	
The	fact	that	3	dimensions	are	sufficient	to	unfold	the	trajectories	suggests	it	
may	be	possible	to	make	a	reasonable	3-factor	mul3variate	model	with	well-
chosen	mechanis@cally	relevant	@me	series	(eg.	river	discharge,	SST	and	
spawning	stock	abundance)		

	 *****Full	Stop*****
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A comparison of taking a static versus a dynamic view

State Shifts in Nanog  
Stem cell transitions from the undifferentiated 

(pluripotent) to the differentiated state 

Verma Lab, Salk & Sugihara Lab SIO 
Gerald Pao, Ethan Deye

This is another example.

Viewing Nanog Gene Expression from a 
Statistical Snapshot

(Static View)

�21

• Nanog gene manipulation
• Mouse stem cells 

engineered to produce 
GFP when Nanog gene is 
actively expressed

• In static snapshot, can see 
that some cells have high 
expression, some low.

Collaboration with Verma Lab, Salk 
Gerald Pao, Ethan Deyle

Nanog is a transcription factor that keeps stem cells pluripotent.

Mouse stem cells are engineered to produce Green Florescent Protein 
(GFP) when the Nanog gene is actively expressed.

In this snapshot we see that some cells have high expression (green) 
and some low (dark)….low states are when the cell differentiates.  We 
don’t see much in between.

Transition to low states was believed to be stochastic

****************************************
Nanog works to maintain pluripotence even w/o lif (leukemia 
inhibitory factor))

GFP was inserted into the nanog locus in one strand only



Viewing Nanog Gene Expression from a 
Statistical Snapshot

(Static View)
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Single-Cell	Analysis	Reveals	that	Expression	of	Nanog	Is	Biallelic	and	Equally	Variable	
as	that	of	Other	Pluripotency	Factors	in	Mouse	ESCs		

Dina	A.	Faddah,	Haoyi	Wang,	Albert	Wu	Cheng,	Yarden	Katz,	Yosef	Buganim,	Rudolf	Jaenisch	

Histogram of expression

This idea of cells randomly transitioning between states comes from 
taking a static statistical view 

That is, we assume the probabilistic average you see across this 
ensemble of cells represents what we expect of any individual cell.  

When we do this and plot the histogram we see 2 discontinuous 
states. (*click*)

and the reigning hypothesis is that switching states is purely random.

Viewing Nanog Gene Expression 
as a Dynamic Process

�23

In fact we can draw out the attractor (in 3D here, though the 5D is the 
best embedding dimension for these time series data) and see that the 
transition between states involves visiting two different parts (lobes) of 
a manifold.

This suggests that the rapid transitions between states may be 
understandable as a nonlinear dynamic phenomenon rather than a 
purely stochastic one.

This is nascent work, but I think it conveys the idea that dynamic tools 
are useful when studying what is essentially a dynamic process.  

And in particular, that understanding causal interactions in such 
systems really requires a nonlinear dynamic perspective.



Prediction

Two methods:    
Simplex projection     S-maps

Out of sample forecasting is a 
rigorous way to validate 

understanding 

Model fitting is not prediction! 

In	my	view,	prediction	should	be	the	standard	(measure	of	merit)	for	validation	in	
science.	(Indeed	it	seems	odd	that	it	is	not	generally	so)	
Fisheries models
GCM’s
Hydrology  etc.

Forecasting with Empirical 
Dynamics

Simplex Projection 

S-maps

We will present two basic methods:
Simplex projection  and  S-maps.
Many other possibilities exist.  These are just two very simple ones.



Simplex Projection

0th order nonlinear prediction method

• to predict X(t+1), look for point x(t) on the manifold

- find its nearest neighbors (x(nn1), x(nn2), etc.)

- see where they went (X(nn1+1), X(nn2+1), etc.)

- take a weighted average

Sugihara and May 1990

This is simply forecasting using nearest neighbor analogues.

Nearest neighbors on the attractor are “points with similar histories”

Let’s see how this works!

Simplex Projection

t–1

Again, each “point” on the manifold is a “history vector”.... a history fragment

Simplex Projection

t–1

Nearest neighbors are “points with similar histories”



Simplex Projection

t–1

Track where they went

Simplex Projection

t–1

The prediction is a weighted average of the neighbors fates.

White noise (statistically not predictable)
First half second half
let’s see what we get with time-lagged coordinates



This is what we find in 3 dimensions (Fork with 3 tynes…. X, Y, Z).

How did I choose 3 dimensions to embed this? 

How did I choose 3 dimensions to embed this?  

--->  Predictability 

The embedding with the best predictability is the one that best resolves 
singularities… best unfolds the attractor.

Let me explain.



Whitney Embedding Theorem 

A D-dimensional object can always be embedded 
in 2D+1 dimensions.

Note:
In EDM the embedding dimension gives an upper bound on the 
minimum number of variables required to model the system to obtain 
a given level of predictability.  It is not absolute, but depends on the 
length and noisiness of the specific data

Ball of thread example

Again, we use prediction to find the embedding that best resolves singularities.

S-Map

‣ Weighted AR-prediction method computed over points on an 
attractor manifold.

‣ Model parameter, θ, controls weighting applied to points in 
local vs global state space

• θ = 0: all attractor points weighted equally (linear model,  
hyperplane, flat manifold, not state dependent, separable)

• θ > 0: local points weighted more (nonlinear model, 
nonseparable, curved manifold)

Measures State Dependence

Sugihara 1994

This measures State Dependence  (curvature in the manifold)

S-Map, θ = 0

t–1

all points are weighed equally… to produce a single global linear map 
(fitting a single map through all the points)



S-Map, θ = 0.5

t–1

as theta is tuned upwards the points close to the current state (the 
predictee) are weighted more heavily when computing the map. Now 
we no longer have a single map, but a different map at each point.

S-Map, θ = 4

t–1

S-Map
Better predictability at any θ>0 indicates nonlinear state 
dependence.
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Again,	S-maps	are	used	to	iden@fy	curvature	in	the	manifold	

Curvature	is	ubiquitous



not preclude the possibility of nonlinear dynamics operating on finer
scales. Nonetheless, these indices have been at the heart of the regime-
shift debate, and we show their features to be stochastic.
More significantly, the various SST records, which are primary

(non-aggregated) measurements, show the temperature shift
phenomenon to be stochastic. That is, even simple SST measure-
ments, which are emblematic of the physical regime shift phenom-
enon21, do not indicate that temperature shifts have low dimensional
nonlinear modes. Rather, they are high dimensional, and conse-
quently they will be more difficult to model mechanistically in a way
that replicates the phenomenological forecasting skill of a high
degree AR model. This is a fundamental constraint on modelling
efforts that we demonstrate empirically here. These findings resonate
with the conception of the ocean as a linear red-noise integrator of
atmospheric phenomena, a hypothesis first advanced in the 1970s27.
However, it is clear that not all physical environmental time series are,
by definition, high dimensional and stochastic; for example, analysis
of meteorological observations shows strong low dimensional non-
linearity in the atmosphere, indicative of the potential for cata-
strophic climate change6,28. Furthermore, although true regime shift

behaviour did not appear in the North Pacific physical oceano-
graphic data that we tested, this obviously does not preclude the
possibility of such behaviour having occurred further into the past or
arising in the future. It simply did not occur in the last century, where
the alleged shifts are indistinguishable from random events.
Biological time series appear to have dynamics that are fundamen-

tally different from those of the physical variables associated with
regime shifts. The relatively skilful out-of-sample forecasts at low
embedding dimensions (even in composites) are consistent with the
view that biological populations are nonlinear stochastic25. The full
set of dynamics consists of a low dimensional, nonlinear, noise-free
skeleton convolved with stochastic events acting on that skeleton to
define the invariant measure25. Thus, the biological populations are
not simply tracking the environment. Rather, our results support the
hypothesis that ecological dynamics in the oceans can be character-
ized by nonlinear amplification of stochastic physical forcing by
biological processes7,8. Regardless of interpretation, the biological
time series for the North Pacific basin have the necessary signature
for regimes to be actual nonlinear features of the data as opposed to
randomly generated ones. This result for landings data and larval fish

Table 2 | Analyses of key North Pacific biological time series

Timescale Biological data Best E Best v Best r Dr Nonlinear? N P-value

Weekly Scripps Pier diatom 3 0.3 0.539 0.139* Yes 830 ,0.01
Monthly Scripps Pier diatom 4 0.05 0.542 0.083 Yes 206 0.134
Quarterly CalCOFI coastal larval fish 7 1.6 0.715 0.031* Yes 3,220 ,0.01
Quarterly CalCOFI coastal-oceanic larval fish 8 0.6 0.744 0.017 Yes 1,400 0.164
Quarterly CalCOFI oceanic larval fish 8 1.4 0.678 0.020* Yes 4,760 0.040
Biannual CalCOFI copepod 6 1.2 0.677 0.027 Yes 1,736 0.078
Annual CalCOFI copepod 5 0.4 0.566 0.015 Yes 868 0.322
Annual CalCOFI coastal larval fish 5 0.6 0.603 0.060* Yes 805 0.038
Annual CalCOFI coastal-oceanic larval fish 4 0.2 0.502 0.092 Yes 350 0.063
Annual CalCOFI oceanic larval fish 7 0.6 0.576 0.017 Yes 1,190 0.273
Annual Chinook salmon 3 0.4 0.448 0.440* Yes 63 ,0.01
Annual Coho salmon 7 0.3 0.656 0.117 Yes 63 0.213
Annual Chum salmon 4 0.18 0.634 0.767* Yes 63 ,0.01
Annual Steelhead trout 3 0.2 0.281 0.272 Yes 63 0.118
Annual Sockeye salmon 4 0.7 0.484 0.168 Yes 63 0.168
Annual Composite salmon and trout 4 0.3 0.464 0.078 Yes 315 0.148

Parameters as in Table 1. Monthly diatom data are averages of weekly samples. Quarterly larval fish data represent four cruises per year, and biannual copepod data represent two cruises per
year. Annual larval fish data are averages of the quarterly samples, and annual copepod data are averages of biannual samples. Commercial fisheries landing data are annual totals. These
population data (described in text) are best embedded in low dimensions, and show improvement in forecast skill as the S-maps are tuned towards increasingly nonlinear solutions. Even
where Dr is not significant (asterisk indicates significant at the 0.05 level), the nonlinear model (v .0) still outperforms the global linear model (v ¼ 0). As such, these biological time series
all show the hallmarks of nonlinear generating mechanisms.

Table 1 | Analyses of key North Pacific physical time series

Timescale Physical data Best E Best v Best r Dr Nonlinear? N P-value

Weekly SIO SST 20 þ 0 0.252 0 No 4,226 1
Monthly SIO SST 20 þ 0 0.787 0 No 984 1
Monthly Pacific Grove SST 20 þ 0 0.524 0 No 945 1
Monthly Farallones SST 20 þ 0 0.486 0 No 764 1
Monthly PDO 20 þ 0 0.255 0 No 1,248 1
Monthly NPI 20 þ 0 0.636 0 No 1,260 1
Monthly SOI 20 þ 0 0.380 0 No 852 1
Quarterly SIO SST 20 þ 0 0.958 0 No 328 1
Quarterly PDO 20 þ 0 0.376 0 No 416 1
Quarterly NPI 20 þ 0 0.497 0 No 420 1
Quarterly SOI 20 þ 0 0.328 0 No 284 1
Annual SIO SST, composite 20 0 0.770 0 No 984 1
Annual PDO, composite 10 0 0.547 0 No 1,248 1
Annual NPI, composite 16 0 0.674 0 No 1,260 1
Annual SOI, composite 13 0 0.640 0 No 852 1

E, embedding dimension; v, nonlinear tuning parameter. Best r (vbest) indicates forecast skill (correlation coefficient), obtained using Dr ¼ ((r at vbest) 2 (r at v0)). A positive Dr measures
the difference in forecasting skill of the best nonlinear model (that is, where v . 0) as compared to the global linear model (that is, where v ¼ 0). Thus, Dr ¼ rbest 2 r0. Data were analysed
at various decimations (resolution in time scale). The PDO, NPI and SOI indices have monthly resolution. Quarterly data are averages of those monthly values. Daily coastal SST anomalies
(daily data minus the year-day average over the entire record) were averaged to form weekly, monthly and quarterly time series. Owing to the paucity of data at the annual scale, we
constructed composite time series by concatenating monthly values (all Januaries, all Februaries, … all Decembers). These data are best embedded in high dimensions and show no
improvement in forecast skill as the S-maps are tuned towards nonlinear solutions. As such, on timescales relevant to the regime shift debate, these physical oceanographic time series are
unanimous in showing the hallmarks of linear stochastic generating mechanisms.

LETTERS NATURE|Vol 435|19 May 2005

338 © 2005 Nature Publishing Group 

 

‣ other examples
• Albacore (Glaser et al. 2011)

• Bluefin Tuna (Fromentin & Powers 2005)

• Sheep (Grenfell et al. 1998)

• Diatoms, Childhood diseases (Sugihara & May 1990)

• cardiac rhythms, sunspots, gravitational flux, fruit fly behavior, neurobiology, gene expression etc.

Hsieh et. al.    Nature Vol 435 May 2005

Nonlinear Attractors Are Ubiquitous in Nature

Dynamic state dependence is ubiquitous

This actually has profound implications for how we can study these systems.

An	Example	of	Nonlinearity: 
Episodic	Fluctua@ons	in	Larval	Supply 

 
 

Dixon,	Milicich	and	Sugihara	Science	(1999)

Example of Nonlinear State Dependence 
Pomacentrid Larval Supply at 

 Lizard Island

Time (days)

Phototropic Damsel fish larvae caught in light traps on the reef



Rho =.78  (Nonlinear Model)

Rho =.29 (Linear (AR3) Model)

Embedding Trial with Univariate Simplex Projection

What this embedding result tells us

• Pomacentrid larval supply is a low dimensional 
nonlinear process. (rho=0.78, n=256) 

• The optimal embedding for the pomacentrid data is 
3 dimensions. 

• Therefore it should be possible to construct a model 
containing 3 variables that is similar in forecast skill 
as the univariate lag-coordinate model.

“Leverage	with	mul@ple	@meseries” 
Look	for	a	mechanis*c	model	by	searching	parallel	

@me	series	of	key	environmental	variables. 

• Construct	mechanis@c	embedding	models	for	
predic@on	by	a	trial	and	error	search	of	parallel	
physical	@me	series.	

• Repeat	this	linearly	to	construct	the	best	
mul@variate	ARMA	model	(AR3).



By multivariate simplex projection (nonlinear 
search) found that the best variables were.

• 1) %night time illumination lagged 19days. 

• 2) cross shelf wind lagged 1 day (best not lagged,  
        but this represents forward information). 

• 3) moderate wind speeds lagged 16-19 days. 

• Linear rho= 0.27,    nonlinear rho=0.82 

	 	 	

	 	 	 	 	

Stars	align				>>>>		Perfect	Storm!
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Using S-map to track 
changing interactions in real time

eg.  This paper that appeared last year in PRSB used S-maps to show how species 
interactions vary in time depending on where on the attractor you are.  That is, it 
showed how to make real time measurements of interactions that are state-
dependent.

positive negative

Tracking Changing Interactions with S-map

The jacobian coefficients (partial derivatives) 
vary depending on location on the attractor

The basic idea is as follows..
The S-map involves calculating a hyperplane or surface at each point as the system 
travels along its attractor. This involves calculating the jacobian matrix whose 
elements are the partial derivatives that measure the effect of the system variables 
on each other.  

Note the the embeddings here are multivariate – In native coordinates (not lags).

Again, the coefficients are fit “sequentially” for each location on the manifold using 
weighted linear regression, with strongest weight given to nearby points, as shown in 



the previous slides.  
In a stable equilibrium system these coefficients are fit to a single equilibrium point 
and are fixed and unchanging.  In S-maps, however, the values are state dependent —
they vary depending on location on the attractor, x(t*).
Thus, by computing sequential jacobians, the S=map tracks interactions (partial 
derivatives) that change with the evolving state of the system.

What is really nice about this is that it is easily accomplished with real field data.

Variable (state dependent) Interaction Strength in a 
Marine Mesocosm (extracted with S-maps)

Impressions

- Interactions vary considerably in time

- As expected, competition      (dCal/dRot) 
is always negative

- Competition occurs only occasionally
Is this State Dependent?

What is characteristic of 
system state during these 
intervals?
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Competition between the two main grazers (shown in red), calanoid 
copepods (Cal) and rotifers (Rot), waxes and wanes

Data from Huisman et al 2011

Here is an example applied to data from a marine mesocosm. (Huisman)

Note that competition between the two main grazers (shown in red), calanoid 
copepods and rotifers, waxes and wanes….     competition occurs only 
occasionally…and very episodically   … why?
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Competition is State Dependent

Consequence of saturating 
feeding responses:

when there is ample food, there 
should be very little competition

Only get competition when main 
prey item is scarce

Thus, we have now have a practical tool for probing changing interactions.



Causality

Let’s now see how EDM deals with causation

Granger Causality

If the following is true

€ 

σ 2 Y2U( ){ } <σ 2 Y2U −Y1( ){ }

Then Y1 “Granger Causes” Y2

U is the universe of all causal variables

Here we are trying to predict Y2 from U (left side)

If we now remove Y1, and predictability declines, Y1 was causal

The problem, however, is that for dynamic systems.... cannot remove Y1  
(according to Takens information about each variable is encoded in all of the others...

Dynamic Causation

• Time series variables are causally related if they are 
coupled (pertubing one variable perturbs the other) and 
belong to the same dynamic system. 

• If X         Y , then information about  X, must be encoded 
in the shadow manifold of Y

• This can be tested with cross mapping.

In dynamic systems, time series variables are causally related if they are coupled and 
belong to the same dynamic system…  **read slide**

“Information about the aggressor is found in the victim.” as it were
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Detecting Causality in
Complex Ecosystems
George Sugihara,1 * Robert May,2 Hao Ye,1 Chih-hao Hsieh,3 * Ethan Deyle,1

Michael Fogarty,4 Stephan Munch5

Identifying causal networks is important for effective policy and management recommendations on
climate, epidemiology, financial regulation, and much else. We introduce a method, based on nonlinear
state space reconstruction, that can distinguish causality from correlation. It extends to nonseparable
weakly connected dynamic systems (cases not covered by the current Granger causality paradigm).
The approach is illustrated both by simple models (where, in contrast to the real world, we know the
underlying equations/relations and so can check the validity of our method) and by application to real
ecological systems, including the controversial sardine-anchovy-temperature problem.

Identifying causality (1) in complex systems
can be difficult. Contradictions arise in many
scientific contexts where variables are posi-

tively coupled at some times but at other times
appear unrelated or even negatively coupled de-
pending on system state (movie S1). Baltic Sea
fisheries, for example, exhibit radically different
dynamic control regimes (top-down versus bottom-
up) depending on the threshold abundance of
planktivores, causing the correlations between fish
and zooplankton to change sign (2). Such state-
dependent behavior is a defining hallmark of com-
plex nonlinear systems (3 , 4 ), and nonlinearity is
ubiquitous in nature (3–11).

Ephemeral or “mirage” correlations are common
in even the simplest nonlinear systems (7 , 11–13 ),
such as shown in Fig. 1 for two coupled difference
equations that exhibit chaotic behavior (14 ):

X ðt þ 1Þ ¼ X ðtÞ½rx − rxX ðtÞ − bx,yY ðtÞ&
Y ðt þ 1Þ ¼ Y ðtÞ½ry − ryY ðtÞ − by,xX ðtÞ& ð1Þ

When this happens, variables thatmay be positively
coupled for long periods can spontaneously become
anticorrelated or decoupled; this can create prob-
lemswhen fittingmodels to observational data (15 ).

Although correlation is neither necessary nor
sufficient to establish causation, it remains deeply
ingrained in our heuristic thinking (8 , 13 , 16 , 17 ).
Onemight conclude, for example, that the variables
in Fig. 1 have no causal relation because they are
uncorrelated. Obviously, lack of correlation does
not imply lack of causation. Because of this and for
reasons just given, the use of correlation to infer
causation is risky, especially as we come to recog-
nize that nonlinear dynamics are ubiquitous.

An alternative approach,Granger causality (GC)
(18 ), provides a framework that uses predictabil-
ity as opposed to correlation to identify causation
between time-series variables. GC is recognized
as the primary advance on the causation problem
since Berkeley (1).

Variable X is said to “Granger cause” Y if the
predictability ofY (in some idealizedmodel) declines
when X is removed from the universe of all possible
causative variables,U (18 ). The key requirement of
GC is separability, namely that information about
a causative factor is independently unique to that
variable (e.g., information about predator effects
is not contained in time series for the prey) and can
be removed by eliminating that variable from the
model. Separability is characteristic of purely sto-
chastic and linear systems, and GC can be useful
for detecting interactions between strongly coupled
(synchronized) variables in nonlinear systems. Sep-
arability reflects the view that systems can be under-
stood a piece at a time rather than as a whole.

However, as Granger (18 ) realized early on, this
approach may be problematic in deterministic set-
tings, especially in dynamic systems with weak to
moderate coupling. For example, GC gives ambig-
uous results for the system in Fig. 1 (see GC cal-
culations S1). This is because separability is not
satisfied in such systems,which, unlike the tradition
in economics and single-species fisheries manage-
ment, need to be considered as a whole. That is to
say, in deterministic dynamic systems (even noisy
ones), if X is a cause for Y, information about X
will be redundantly present in Y itself and cannot
formally be removed from U—a consequence of
Takens’ theorem (19 , 20 ). To see this directly, we
note simply that Eq. 1 can be rewritten as a model
for Y(t + 1) in terms of Y(t) and Y(t – 1) (see box
S1 for a worked example). Therefore, information
about X(t) that is relevant to predicting Y is redun-
dant in this system and cannot be removed sim-
ply by eliminating X as an explicit variable. When
Granger’s definition is violated, GC calculations
are no longer valid, leaving the question of detect-
ing causation in such systems unanswered.

In addition to nonseparability, ecosystems differ
from the systems typically studied with Granger’s
approach in other important ways. First, in eco-

system dynamics, weak tomoderate coupling is the
norm. McCann (21) and others have developed a
strong case for the ubiquity of weak coupling in
ecological food webs and have demonstrated their
importance for system stability. Second, ecosystems
are typically subject to forcing by external driving
variables such as temperature, precipitation, and up-
welling [e.g., (6 , 22)]. Because many species share
similar abiotic environments, this can lead to correla-
tions and apparent synchrony among noninteracting
species [e.g., the Moran effect (23 )], complicat-
ing the task of sorting out the real interactions from
spurious correlations. It is therefore important in
ecology to have methods that (i) address nonsep-
arable systems, (ii) identify weakly coupled varia-
bles, and (iii) distinguish interactions among species
from the effects of shared driving variables.

Here,we examine an approach specifically aimed
at identifying causation in ecological time series. We
demonstrate the principles of our approach with sim-
ple model examples, showing that the method dis-
tinguishes species interactions from the effects of
shared driving variables. Finally, we apply themeth-
od to ecological data from experimental and field
studies, showinghow it distinguishes top-down from
bottom-up control in the classic Paramecium-
Didinium experiment and clarifies the ongoing de-
bate about the nature of interactions among sardine,
anchovy, and sea surface temperature in the Cali-
fornia Current ecosystem.

Our approach is not in competition with the
many effective methods that use GC (see sup-
plementary text); rather, it is specifically aimed at
a class of system not covered by GC. As verified
in GC calculations S1 to S5 and box S1, GC does
not apply to this class of system.

Dynamic causation and CCM. GC applies if
the world is purely stochastic. However, to the
extent that it is deterministic and dynamics are not
entirely random, there will be an underlying mani-
fold governing the dynamics (representing coher-
ent trajectories as opposed to a random tangle).

In dynamical systems theory, time-series variables
(say,X and Y ) are causally linked if they are from the
same dynamic system (4 , 19 , 20 )—that is, they
share a common attractormanifoldM (movies S1 to
S3 illustrate this idea). Thismeans that each variable
can identify the state of the other (3 , 19 , 20 , 24 , 25 )
(e.g., information about past prey populations can be
recovered from the predator time series, and vice
versa). Additionally, when one variable X is a sto-
chastic environmental driver of a population varia-
ble Y, information about the states of X can be
recovered from Y, but not vice versa. For example,
fish time series can be used to estimateweather, but
not conversely. This runs counter to Granger’s
intuitive scheme (see explanation in box S1).

Our alternative approach, convergent crossmap-
ping (CCM), tests for causation by measuring the
extent to which the historical record of Yvalues can
reliably estimate states of X. This happens only ifX
is causally influencing Y. Inmore detail, CCM looks
for the signature of X in Y’s time series by seeing
whether there is a correspondence between the
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Detecting Causality in
Complex Ecosystems
George Sugihara,1 * Robert May,2 Hao Ye,1 Chih-hao Hsieh,3 * Ethan Deyle,1

Michael Fogarty,4 Stephan Munch5

Identifying causal networks is important for effective policy and management recommendations on
climate, epidemiology, financial regulation, and much else. We introduce a method, based on nonlinear
state space reconstruction, that can distinguish causality from correlation. It extends to nonseparable
weakly connected dynamic systems (cases not covered by the current Granger causality paradigm).
The approach is illustrated both by simple models (where, in contrast to the real world, we know the
underlying equations/relations and so can check the validity of our method) and by application to real
ecological systems, including the controversial sardine-anchovy-temperature problem.

Identifying causality (1) in complex systems
can be difficult. Contradictions arise in many
scientific contexts where variables are posi-

tively coupled at some times but at other times
appear unrelated or even negatively coupled de-
pending on system state (movie S1). Baltic Sea
fisheries, for example, exhibit radically different
dynamic control regimes (top-down versus bottom-
up) depending on the threshold abundance of
planktivores, causing the correlations between fish
and zooplankton to change sign (2). Such state-
dependent behavior is a defining hallmark of com-
plex nonlinear systems (3 , 4 ), and nonlinearity is
ubiquitous in nature (3–11).

Ephemeral or “mirage” correlations are common
in even the simplest nonlinear systems (7 , 11–13 ),
such as shown in Fig. 1 for two coupled difference
equations that exhibit chaotic behavior (14 ):

X ðt þ 1Þ ¼ X ðtÞ½rx − rxX ðtÞ − bx,yY ðtÞ&
Y ðt þ 1Þ ¼ Y ðtÞ½ry − ryY ðtÞ − by,xX ðtÞ& ð1Þ

When this happens, variables thatmay be positively
coupled for long periods can spontaneously become
anticorrelated or decoupled; this can create prob-
lemswhen fittingmodels to observational data (15 ).

Although correlation is neither necessary nor
sufficient to establish causation, it remains deeply
ingrained in our heuristic thinking (8 , 13 , 16 , 17 ).
Onemight conclude, for example, that the variables
in Fig. 1 have no causal relation because they are
uncorrelated. Obviously, lack of correlation does
not imply lack of causation. Because of this and for
reasons just given, the use of correlation to infer
causation is risky, especially as we come to recog-
nize that nonlinear dynamics are ubiquitous.

An alternative approach,Granger causality (GC)
(18 ), provides a framework that uses predictabil-
ity as opposed to correlation to identify causation
between time-series variables. GC is recognized
as the primary advance on the causation problem
since Berkeley (1).

Variable X is said to “Granger cause” Y if the
predictability ofY (in some idealizedmodel) declines
when X is removed from the universe of all possible
causative variables,U (18 ). The key requirement of
GC is separability, namely that information about
a causative factor is independently unique to that
variable (e.g., information about predator effects
is not contained in time series for the prey) and can
be removed by eliminating that variable from the
model. Separability is characteristic of purely sto-
chastic and linear systems, and GC can be useful
for detecting interactions between strongly coupled
(synchronized) variables in nonlinear systems. Sep-
arability reflects the view that systems can be under-
stood a piece at a time rather than as a whole.

However, as Granger (18 ) realized early on, this
approach may be problematic in deterministic set-
tings, especially in dynamic systems with weak to
moderate coupling. For example, GC gives ambig-
uous results for the system in Fig. 1 (see GC cal-
culations S1). This is because separability is not
satisfied in such systems,which, unlike the tradition
in economics and single-species fisheries manage-
ment, need to be considered as a whole. That is to
say, in deterministic dynamic systems (even noisy
ones), if X is a cause for Y, information about X
will be redundantly present in Y itself and cannot
formally be removed from U—a consequence of
Takens’ theorem (19 , 20 ). To see this directly, we
note simply that Eq. 1 can be rewritten as a model
for Y(t + 1) in terms of Y(t) and Y(t – 1) (see box
S1 for a worked example). Therefore, information
about X(t) that is relevant to predicting Y is redun-
dant in this system and cannot be removed sim-
ply by eliminating X as an explicit variable. When
Granger’s definition is violated, GC calculations
are no longer valid, leaving the question of detect-
ing causation in such systems unanswered.

In addition to nonseparability, ecosystems differ
from the systems typically studied with Granger’s
approach in other important ways. First, in eco-

system dynamics, weak tomoderate coupling is the
norm. McCann (21) and others have developed a
strong case for the ubiquity of weak coupling in
ecological food webs and have demonstrated their
importance for system stability. Second, ecosystems
are typically subject to forcing by external driving
variables such as temperature, precipitation, and up-
welling [e.g., (6 , 22)]. Because many species share
similar abiotic environments, this can lead to correla-
tions and apparent synchrony among noninteracting
species [e.g., the Moran effect (23 )], complicat-
ing the task of sorting out the real interactions from
spurious correlations. It is therefore important in
ecology to have methods that (i) address nonsep-
arable systems, (ii) identify weakly coupled varia-
bles, and (iii) distinguish interactions among species
from the effects of shared driving variables.

Here,we examine an approach specifically aimed
at identifying causation in ecological time series. We
demonstrate the principles of our approach with sim-
ple model examples, showing that the method dis-
tinguishes species interactions from the effects of
shared driving variables. Finally, we apply themeth-
od to ecological data from experimental and field
studies, showinghow it distinguishes top-down from
bottom-up control in the classic Paramecium-
Didinium experiment and clarifies the ongoing de-
bate about the nature of interactions among sardine,
anchovy, and sea surface temperature in the Cali-
fornia Current ecosystem.

Our approach is not in competition with the
many effective methods that use GC (see sup-
plementary text); rather, it is specifically aimed at
a class of system not covered by GC. As verified
in GC calculations S1 to S5 and box S1, GC does
not apply to this class of system.

Dynamic causation and CCM. GC applies if
the world is purely stochastic. However, to the
extent that it is deterministic and dynamics are not
entirely random, there will be an underlying mani-
fold governing the dynamics (representing coher-
ent trajectories as opposed to a random tangle).

In dynamical systems theory, time-series variables
(say,X and Y ) are causally linked if they are from the
same dynamic system (4 , 19 , 20 )—that is, they
share a common attractormanifoldM (movies S1 to
S3 illustrate this idea). Thismeans that each variable
can identify the state of the other (3 , 19 , 20 , 24 , 25 )
(e.g., information about past prey populations can be
recovered from the predator time series, and vice
versa). Additionally, when one variable X is a sto-
chastic environmental driver of a population varia-
ble Y, information about the states of X can be
recovered from Y, but not vice versa. For example,
fish time series can be used to estimateweather, but
not conversely. This runs counter to Granger’s
intuitive scheme (see explanation in box S1).

Our alternative approach, convergent crossmap-
ping (CCM), tests for causation by measuring the
extent to which the historical record of Yvalues can
reliably estimate states of X. This happens only ifX
is causally influencing Y. Inmore detail, CCM looks
for the signature of X in Y’s time series by seeing
whether there is a correspondence between the
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Featured Commentary in Nature Physics by Mark Buchnan November 2012

The basic idea was described in this article, and is summarized in the following video 
clip… last one.
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Here is another video clip

Convergent Cross Mapping
(CCM)

• If X causes (influences) Y then, Y contains 
information about X that can be used to predict 
(recover) X.

• That is, states of X can be recovered from the 
history of Y.

Convergent cross mapping (CCM) involves recovering states of the causal variable 
from the the affected variable.

If this is possible, then causal influence is established.



Convergence 
To test X —>Y we use the Y time series to construct a shadow manifold to recover past 
or current states of X.  A necessary condition is that this cross map estimate of X should improve 
(converge) with time series length.  (L= Time Series Length or Library Size)

Cross Map Skill
(Correlation Coefficient)

L= Time Series Length or Library Size

A necessary condition is that the cross map estimate should improve (converge) 
with time series length

L = library size or time series length

Let’s see some examples

Didinium-Paramecium Predator-Prey Experiment 
Data from Veilleux 1976

<- effect of prey on predator

<- effect of  predator on prey

Causal effects with no time lag

Example	1:	This	is	the	classic	pred-prey	experiment	that	Gause	made	famous.	
didinium=ro@fer	predator	
paramecium=prey	

Cross	mapping	in	both	direc@ons	indicates	bi-direc@onal	causa@on.	
red	=	effect	of	pred->prey	
blue	=	effect	of	prey	->	pred	

Prey	popula@on	response	(mortality)	is	immediate	
Predator	response	(growth	from	feeding)	is	lagged
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Units are in 1/2 days…. lag 2 = 1 day



Causal Links Between Sardine, Anchovy and SST This is a field example:  
Sardines and anchovies show reciprocal abundance patterns in the 20th century 
suggestive of competition.

With cross mapping, however *point* we see that there is no reciprocal information 
here.  Sardines do not affect anchovies and visa versa. However, for both species we 
find clear evidence of convergence with SST.  That is, the time series for both 
sardines and anchovies contain information about ocean temperatures.

Red Tides in La Jolla

• Observations of episodic red tides in La Jolla 
date back to 1900 … regime-like in occurrence

• Prediction elusive, but are hypothesized to arise 
during very specific environmental conditions

• No obvious correlations

Alejandro Díaz (ttp://en.wikipedia.org/wiki/File:La-Jolla-Red-Tide.780.jpg)

McGowan et. al. Ecology (2017)

a	final	ecological	example:	
Episodic	Red	Tides	around	Scripps	are	a	classic	example	of	something	that	no	one	
has	been	able	to	predict.	They	have	been	thought	to	be	regime-like,	and	the	
mechanism	for	the	rapid	transi@on	to	this	state	remained	a	mystery	for	over	a	
century.		

Despite	a	half	dozen	or	so	Scripps	Theses	showing	in	principle	(by	experiment)	that	
environmental	drivers	should	be	important,	no	obvious	field	correla@ons	have	been	
found.	(between	environmental	variables	and	chlorophyll-a).

Chlorophyll and Temperature This was exactly the case with the temperature anomaly we saw 
earlier



• Univariate EDM (chl-a) good for describing internally 
driven dynamics

• Gives signifcant univariate forecasts, ρ = 0.49   (nonlinear 
simplex)

Red Tides in La Jolla

1985 1990 1995 2000 2005 2010
0

50

100

150

200

250

Su
rfa

ce
 C

hl
 A

 (m
g/

m
3 )

Year

The absence of environmental correlations suggests that the events cannot 

be described by linear dynamics,   

and this is confirmed by an S-map test for nonlinearity and by the significant 
predictability found with nonlinear forecasting using univariate simplex 

projection. 

… these predictions are for events driven by internal deterministic dynamics.

• Univariate EDM (chl-a) good for describing internally 
driven dynamics

• Gives signifcant univariate forecasts, ρ = 0.49   (nonlinear 
simplex)
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The absence of environmental correlations suggests that the events cannot 

be described by linear dynamics,   

and this is confirmed by an S-map test for nonlinearity and by the significant 
predictability found with nonlinear forecasting using univariate simplex 

projection. 

… these predictions are for events driven by internal deterministic dynamics.

• Focus on bloom days only, ρ = 0.29

• Suggests stochastic external forces are more important 
during blooms

• For good prediction, must explicitly include the drivers

Red Tides in La Jolla
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However, when we examine just the bloom days (n=169), prediction 

(univariate simplex) is not nearly as skillful.   
This suggests that internal dynamics alone cannot explain red tides, and that 

to do so we must explicitly account for stochastic external drivers.



Cross-mapping vs. Correlation

Ei Lag (wks) chl-a ⇒ Ei Ei ⇒ chl-a correlation

nitrate 1 0.24 0.04 -0.12

phosphate 1 0.03 0.20 0.10

silicate 2 0.16 <0 0.15

nitrite 1 0.24 0.01 -0.13

N:P 1 0.32 0.15 -0.11

N* 2 0.02 <0 -0.05

Si* 2 0.16 <0 0.16

Tsurface (SIO) 3 0.19 <0 -0.12

Tbottom (SIO) 1 0.19 0.08 -0.03

Ssurface (SIO) 0 0.10 0.14 -0.24

Sbottom (SIO) 0 0.08 0.15 -0.21

ρsurface (SIO) 3 0.32 <0 -0.04

ρbottom (SIO) 1 0.34 0.05 -0.04

Tsurface (buoy) 3 0.26 <0 -0.15

windu (buoy) 2 0.21 0.12 0.09

n=169

Nutrient
History

Stratification

The candidate variables fall into two loose categories:  
1. variables that summarize nutrient history (CLICK)  
2. and variables related to stratification and mixing (CLICK). 
Again, (CLICK) if you look with cross correlation, there is very little 
suggestion of environmental forcing.  
However, when you look with CCM (CLICK), you can see most of the 
suspected candidate variables do in fact show causal influence in the time 
series data from field observations. 
Therefore, including these variables as coordinate axes in multivariate EDM 

• Predict more recent data (out-of-sample), ρ > 0.6.

Predicting Recent Behavior
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Story of class… 
This is TRUE out of sample forecasting.   
Indeed, leave-one-out cross-validation over the entire 30-year (1600 
point) time series gives very few false forecasts that a bloom will occur 
(e.g., for some model ensembles as few as 34 false positives and 19 
false negatives). 

Thus, we have begun to build a valid understanding of the causal 
mechanisms and more importantly we can forecast red tides with 
some accuracy. 



Some example studies

• Experimental studies suggest that cosmic rays 
could affect global temperature (via cloud 
formation). 

• CCM can distinguish between short-term dynamics 
(i.e., cloud formation) and long-term dynamics (i.e., 
climate change) by examining first-difference 
temperature vs. raw temperature 

• Cosmic rays influence only year-to-year variations 
in temperature

Dynamical evidence for causality between galactic
cosmic rays and interannual variation in
global temperature
Anastasios A. Tsonisa,1, Ethan R. Deyleb, Robert M. Mayc,1, George Sugiharab,1, Kyle Swansona, Joshua D. Verbetena,
and Geli Wangd

aDepartment of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, WI 53201; bScripps Institution of Oceanography, University of
California, San Diego, La Jolla, CA 92093; cDepartment of Zoology, University of Oxford, Oxford OX1-3PS, United Kingdom; and dKey Laboratory of Middle
Atmosphere and Global Environment Observations, Institute for Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China

Contributed by Robert M. May, December 17, 2014 (sent for review August 5, 2014; reviewed by Brian John Hoskins and Tim N. Palmer)

As early as 1959, it was hypothesized that an indirect link between
solar activity and climate could be mediated by mechanisms
controlling the flux of galactic cosmic rays (CR) [Ney ER (1959) Na-
ture 183:451–452]. Although the connection between CR and cli-
mate remains controversial, a significant body of laboratory
evidence has emerged at the European Organization for Nuclear
Research [Duplissy J, et al. (2010) Atmos Chem Phys 10:1635–1647;
Kirkby J, et al. (2011) Nature 476(7361):429–433] and elsewhere
[Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhøj UI
(2007) Proc R Soc A 463:385–396; Enghoff MB, Pedersen JOP, Ugger-
hoj UI, Paling SM, Svensmark H (2011) Geophys Res Lett 38:L09805],
demonstrating the theoretical mechanism of this link. In this article,
we present an analysis based on convergent cross mapping, which
uses observational time series data to directly examine the causal
link between CR and year-to-year changes in global temperature.
Despite a gross correlation, we find no measurable evidence of
a causal effect linking CR to the overall 20th-century warming trend.
However, on short interannual timescales, we find a significant,
although modest, causal effect between CR and short-term, year-
to-year variability in global temperature that is consistent with the
presence of nonlinearities internal to the system. Thus, although CR
do not contribute measurably to the 20th-century global warming
trend, they do appear as a nontraditional forcing in the climate
system on short interannual timescales.

climate variability | cosmic rays | global temperature | causality |
convergent cross mapping

The basic principles behind a possible connection between
galactic cosmic rays (CR) and global temperature (GT) are

as follows: It has been known since the invention of the cloud
chamber in 1911 by Charles Thomson Rees Wilson that ionizing
radiation leads to atmospheric cloud nucleation. Although the
prime source of ionizing radiation in the global troposphere is
CR, the flux of CR reaching the troposphere depends on the
solar wind. The solar wind is a stream of ionized gases that blows
outward from the Sun, and its intensity varies strongly with the
level of surface activity on the Sun. The Earth’s magnetic field
shields the planet from much of the solar wind, deflecting that
wind like water around the bow of a ship. When solar activity
is great, the solar wind is strong, swiping away CR arriving at
the top of the atmosphere. These CR are hypothesized to affect
cloud formation and cloudiness, and therefore GT. The net ra-
diative effect of cloudiness depends on the difference between
incoming solar radiation and outgoing long-wave radiation. In-
creased cloudiness in the upper troposphere reduces outgoing
long-wave radiation, thereby resulting in warming of the planet.
Increased cloudiness in the lower troposphere causes less in-
coming radiation, and therefore cooling of the planet. Data
suggest (6) that the amount of CR is positively correlated with
the amount of low-level clouds but has no effect on middle- or
high-level clouds. Although this is still an open question (7, 8),

the reduction in flux in CR in times of high solar activity is hy-
pothesized to result in less cloud nucleation and fewer cloud
condensation nuclei, and consequently, reduced low-level cloud
amounts. This, in turn, leads to a higher solar radiation flux at
the Earth’s surface, and warmer temperatures. Conversely, a
weaker solar wind results in cooler temperatures. The actual
chemical processes and reactions involved in this problem are
complex, but a growing body of experimental and theoretical
work has uncovered a chemical pathway by which CR ionization
may increase nucleation rates to levels appropriate for cloud
condensation nuclei (2–5, 9–11 and references therein). This
suggests a superficially simple network linking the Sun, CR, and
global climate, with the interaction between the Sun and CR
having a potential influence on the climate system. However
reasonable this may be, as described in a 2006 review (12), “The
suggested mechanisms are, however, too complex to evaluate
meaningfully at present.”

Data Analysis and Results
In this article, we use a recently developed method to examine
the causal connection, as it exists, between CR and GT in the
observational record. To date, attempts at finding observational
evidence for the link between solar activity/CR and climate have
relied on simple linear cross correlation or spectral coherence
analysis (6, 13–17). Although suggestive, it is well known that

Significance

Herewe use newly available methods to examine the dynamical
association between cosmic rays (CR) and global temperature
(GT) in the 20th-century observational record. We find no mea-
surable evidence of a causal effect linking CR to the overall 20th-
century warming trend; however, on short interannual time-
scales,we find a significant, althoughmodest, causal effect of CR
on short-term, year-to-year variability in GT. Thus, although CR
clearly do not contribute measurably to the 20th-century global
warming trend, they do appear as a nontraditional forcing in the
climate system on short interannual timescales, providing an-
other interesting piece of the puzzle in our understanding of
factors influencing climate variability.
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* The increase in CR incidence in the 20th century has been 
used to suggest that the observed climate warming is natural 
and not due to man.

* This study used CCM to examine this potential effect.   It 
found no evidence for CR causing the 20th century warming 
trend. But it did find an effect on interannual time scales… 
resonates with experiments the show how CR could affect 
cloud formation.
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Causal feedbacks in climate change
Egbert H. van Nes1*, Marten Sche�er1, Victor Brovkin2, Timothy M. Lenton3, Hao Ye4, Ethan Deyle4

and George Sugihara4*
The statistical association between temperature and
greenhouse gases over glacial cycles is well documented1, but
causality behind this correlation remains di�cult to extract
directly from the data. A time lag of CO2 behind Antarctic
temperature—originally thought to hint at a driving role
for temperature2,3—is absent4,5 at the last deglaciation, but
recently confirmed at the last ice age inception6 and the end of
the earlier termination II (ref. 7). We show that such variable
time lags are typical for complex nonlinear systems such as the
climate, prohibiting straightforward use of correlation lags to
infer causation. However, an insight from dynamical systems
theory8 now allows us to circumvent the classical challenges
of unravelling causation from multivariate time series. We
build on this insight to demonstrate directly from ice-core data
that, over glacial–interglacial timescales, climate dynamics
are largely driven by internal Earth system mechanisms,
including a marked positive feedback e�ect from temperature
variability on greenhouse-gas concentrations.

Earth system models9 have been an e�ective, albeit indirect,
way to quantify causality in the climate system. The e�ects of CO2
and other greenhouse gases (GHGs) on Earth’s temperature are
relatively well understood, but estimates of the e�ect of temperature
variability onGHGdynamics remain uncertain10–12. Quantifying the
actual strength of this e�ect is challenging, because it involves a
plethora of mechanisms that are di�cult to measure and sometimes
oppose each other. For instance, increased photosynthesis at higher
CO2 levels implies a negative feedback, whereas enhanced plant and
soil respiration at higher temperatures leads to carbon release and
a positive feedback13. A warmer climate may induce the release of
CO2, CH4 and N2O from terrestrial ecosystems, especially in polar
regions14. Furthermore, at higher temperatures, marine CaCO3
neutralization of anthropogenic CO2 decreases15, and methane is
released from hydrate storages below the sea floor, which may
amplify global warming16. Overall, higher global temperatures are
believed to cause a net increase in atmospheric concentrations of
GHGs, implying a positive feedback in warming10,11,17–19. However,
given the complexity of the mechanisms and models, uncertainty
over the feedback e�ect remains large.

This issue raises the question if there are more direct, model-
independent estimates of the feedback e�ect based on the strikingly
parallel dynamics of temperature and GHGs over the Pleistocene
ice ages (Fig. 1a). Data-based approaches for unravelling the
causation operating behind this correlation have hitherto largely
focused on phase lags between past climate data sets3, but these
lags vary over time. A slight lead of Antarctic temperature over
CO2 variations has been argued to point to temperature as a
driver of CO2 changes2. However, more recent studies cast doubt
on the existence of a significant time lag of CO2 behind either

Antarctic4 or global5 temperature at the last glacial termination, with
variations inmethane and temperature seeming nearly synchronous
at the Bølling transition20. Meanwhile, the latest data on an earlier
termination7 and inception6 show periods of significant time lags
between CO2 and Antarctic temperature. A simple moving-window
scan of optimal time displacement for correlation (Supplementary
Fig. 1c) supports the emerging view that the time lag of CO2 behind
temperature as recorded in the Vostok ice core1 has varied widely
over the past 400 kyr. Although errors in dating may contribute to
such variation, detailed recent studies6,7,21 confirm that these lags do
vary substantially over time.

What is not common knowledge, however, is that variable time
displacements are in fact expected of nonlinear dynamical systems,
following from so-calledmirage correlations—correlations between
variables that come and go or even change sign8. Correlation is
indeed a poor tool for analysing nonlinear dynamical systems. This
issue can be illustrated by an analysis of some well-known models
(Supplementary Fig. 1a,b). Similar to the Vostok data, in these
models one variable lags behind the other during some periods but
this lag can disappear or even lead during other episodes. This raises
the possibility that the lingering controversy over variable lags may
be partly a product of using an inappropriate lens (simple cross-
correlation) to infer causation.

There is a powerful new methodological approach, however,
that can help distinguish causality from spurious correlation in
multivariate time series from deterministic dynamical systems8.
The technique—convergent cross-mapping (CCM)—is based on a
theorem proved by Takens22,23, stating that the essential information
of a multidimensional dynamical system is retained in the times
series of any single variable of that system. CCM is based on
the idea that Takens’ theorem can be used to detect if two time-
series variables belong to the same dynamical system. E�ectively, if
variable X is influencing a paired observed variable Y , then based
on the generalized Takens’ theorem23, we can expect that variable X
can be reliably predicted from the time-series history of variable Y .
Thus CCMmeasures the extent to which the recent historical record
of the a�ected variableY (or its proxies) reliably estimates states of a
causal variable X (or its proxies). This estimation skill is quantified
by calculating the correlation coe�cient ⇢ between predicted and
observed values of X . A key property that distinguishes direct or
indirect causation from simple correlation is convergence. This
means that cross-mapped estimates improve in estimation skill with
the length L of the time series that is used to predict X from Y . The
level to which predictive power converges (‘CCM skill’8 hereafter)
can be viewed as an estimator of the strength of the causal link. The
essential mechanics of CCM are detailed in ref. 8 and summarized
in three one-minute animations (Supplementary Appendix of ref. 8
or http://simplex.ucsd.edu/Movie_Sall.mov).

1Environmental Sciences Group, Wageningen University, NL-6700 AA Wageningen, the Netherlands. 2Max Planck Institute for Meteorology, Bundesstraße
53, 20146 Hamburg, Hamburg, Germany. 3Earth System Science Group, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QE,
UK. 4Scripps Institution of Oceanography, University of California, California 92093, USA. *e-mail: egbert.vannes@wur.nl; gsugihara@ucsd.edu
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• Confirms by direct observation the well-established 
mechanism that greenhouse gases (CO2 and CH4) 
affect temperature. An immediate effect. 

• Confirms the controversial link of temperature 
affecting greenhouse gases, producing positive 
feedbacks. A delayed effect.

This study involved the analysis of the Vostock ice core time 
series data to see if there is direct observational evidence for 
causal effects



• Forecasts of fisheries recruitment have been unreliable 
(weak stock-recruit relationship based on classic models 
assuming equilibrium dynamics) 

• Environment is a likely factor, but does not improve 
forecast performance of classical models (in official DFO 
forecasts) 

• Find that EDM models using environmental variables 
provide accurate forecasts with historical cross validation 
over 57 yrs… accurate 2014 (15 and16) forecast!

Equation-free mechanistic ecosystem forecasting using
empirical dynamic modeling
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It is well known that current equilibrium-based models fall short as
predictive descriptions of natural ecosystems, and particularly of
fisheries systems that exhibit nonlinear dynamics. For example,
model parameters assumed to be fixed constants may actually vary in
time, models may fit well to existing data but lack out-of-sample
predictive skill, and key driving variables may be misidentified due to
transient (mirage) correlations that are common in nonlinear systems.
With these frailties, it is somewhat surprising that static equilibrium
models continue to be widely used. Here, we examine empirical
dynamic modeling (EDM) as an alternative to imposed model
equations and that accommodates both nonequilibrium dynamics
and nonlinearity. Using time series from nine stocks of sockeye
salmon (Oncorhynchus nerka) from the Fraser River system in British
Columbia, Canada, we perform, for the the first time to our knowl-
edge, real-data comparison of contemporary fisheries models with
equivalent EDM formulations that explicitly use spawning stock
and environmental variables to forecast recruitment. We find that
EDMmodels produce more accurate and precise forecasts, and unlike
extensions of the classic Ricker spawner–recruit equation, they show
significant improvements when environmental factors are included.
Our analysis demonstrates the strategic utility of EDM for incorporat-
ing environmental influences into fisheries forecasts and, more gen-
erally, for providing insight into how environmental factors can
operate in forecast models, thus paving the way for equation-free
mechanistic forecasting to be applied in management contexts.

ecosystem forecasting | fisheries ecology | physical–biological interactions |
empirical dynamic modeling | nonlinear dynamics

One of the fundamental challenges of environmental science
is to understand and predict the behavior of complex nat-

ural ecosystems. This task can be especially difficult when mul-
tiple drivers (e.g., species interactions, environmental influences)
interact in a nonlinear state-dependent way to produce dynamics
that appear to be erratic and nonstationary (1). In the standard
parametric approach, which implicitly assumes that the selected
model and its equations are essentially correct, the equations
(really just mechanistic hypotheses) can lack the flexibility to de-
scribe the nonlinear dynamics that occur in nature. Consequently,
these parametric models tend to perform poorly as descriptions of
reality, with little explanatory or predictive power (2, 3), and
limited usefulness for prediction and management.

Parametric Models as Hypotheses
A common problem when applying the parametric approach to
nonlinear systems is that of ephemeral fitting. That is, although
population models may assume that demographic parameters
such as growth rate or carrying capacity are fixed constants, these
quantities are often observed to vary in time or in relation to other
variables (e.g., resource availability, changing climate regimes)
when tested on actual data (4). This principle is illustrated in Fig.
1A, where the Ricker spawner–recruit relationship is fit to the
early (1948–1976) and late (1977–2005) halves of the time series

from the Seymour stock. Very different relationships emerge in
these two time periods, conflicting with the assumption of a fixed
equilibrium and constant parameter values. Indeed, Beamish et al.
(5) found that the Ricker model fit better when constrained by
climate regimes, suggesting that the spawner–recruit relationship
does vary in time, a fact consistent with the general notion of
nonlinear state dependence (6, 7).
At its core, nonlinear dynamics [which are known to be

ubiquitous in marine species (8, 9)] occur when variables have in-
terdependent effects; this can be problematic when applying a re-
ductionist approach to understand nonlinear systems. For example,
in laboratory experiments, guppies (Poecilia reticulatus) preferen-
tially eat Drosophila or tubificid worms depending on which prey
is more abundant (10). Thus, the strength of predation on, say,
Drosophila, will change depending on the abundance of tubificid
worms. This prey-switching behavior typifies nonlinear state de-
pendence, whereby different components cannot be treated in-
dependently, as would be the case in a linear system or even a
nonlinear system approximated at equilibrium. Consequently, ap-
plying a model that assumes separability of effects [e.g., vector
autoregression (11)] to a system that is actually nonlinear can give
the appearance of nonstationarity or stochasticity even when the
underlying mechanisms are unchanged and deterministic.
Nonlinearity is also known to affect the correct identification of

causal drivers—a key prerequisite for understanding and predicting
system behavior. In nonlinear systems, because interacting variables

Significance

The conventional parametric approach to modeling relies on
hypothesized equations to approximate mechanistic processes.
Although there are known limitations in using an assumed set
of equations, parametric models remain widely used to test for
interactions, make predictions, and guide management deci-
sions. Here, we show that these objectives are better addressed
using an alternative equation-free approach, empirical dynamic
modeling (EDM). Applied to Fraser River sockeye salmon, EDM
models (i) recover the mechanistic relationship between the
environment and population biology that fisheries models
dismiss as insignificant, (ii) produce significantly better fore-
casts compared with contemporary fisheries models, and
(iii) explicitly link control parameters (spawning abundance) and
ecosystem objectives (future recruitment), producing models
that are suitable for current management frameworks.
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This one focused on forecasting.   It was aimed at providing 
better production forecasts for Canada’s iconic sockeye salmon 
industry.

Deyle et al. 
PNAS 2016

And	this	is	an	applica@on	of	these	methods	to	understand	environmental	drivers	of	
flu	epidemics.		What	is	interes@ng	here	is	that	we	were	able	to	iden@fy	AH	as	causal	
and	find	a	specific	temperature	threshold	75F	below	which	higher	AH	reduces	flu	
transmission	and	above	which	it	increases	flu	transmission.	

There	are	many	other	factors	of	course,	but	AH	is	certainly	one	of	them.

‣ “The model-free method reveals a consciousness-related hierarchy of 
cortical areas, where dynamical complexity increases along with cross-
area information flow.

‣ “This approach reveals a universality of inter-areal interactions and 
complexity in conscious brain dynamics, demonstrating its wide 
application to deciphering complex neuronal systems.”

2016 winner of William James Prize
Showed	how	the	approach	can	be	developed	to	index	brain	states.



Closing Remark

“There is a fundamental disconnect between the biological 
interactions that we observe and the common (linear/
reductionist) assumptions of the framework that we use to 
study them.” 

Now	this	is	gelng	“preachy”	

Sta@c	Theore@cal	Ideal			vs.			Dynamic	Reality	

Flip	book	analogy…		

Static Theoretical Ideal vs. Dynamic Reality

‣ Static Theoretical 
Ideal  (classical linear 
framework)

• equilibrium

• stable

• separable 
(decomposable, study 
piecewise)

• Granger

• classic parametric 
models

‣ Dynamic Reality 
(nonlinear empirical 
dynamics)

• non-equilibrium

• non-stable

• non-separable 
(interdependent, study 
as a whole)

• CCM

• empirical dynamic 
models

Summary Statement: The	basic	dichotomy	here	is	a	contrast	between	what	was	thought	to	be	a	necessary	
expedient	(a	theore@cal	compromise	based	on	a	sta@c	equilibrium	system	of	
independent	parts),	and	the	reality	of	nonlinear	interdependent	ever-changing	
natural	systems.		

The	explosion	of	data	is	enabling	inves@ga@on	at	the	whole	systems	level.	

What	I	tried	to	suggest	today	is	that	it	is	possible	and	worthwhile	to	develop	
approaches	where	this	expedient	is	NOT	necessary.	

Wordy Manifesto
Despite the known reality and ubiquity of nonlinear dynamics, and the costs 
associated with unanticipated threshold phenomena or tipping points, nearly all 
attempts to understand them in applied contexts (outside of formal studies of 
turbulence) have used incorrect linear statistical tools (static analytical tools based 
on a classical linear paradigm). This paradigm based on stable, stationary 
equilibrium points or cyclic equilibrium dynamics allows systems to be studied 
piecewise as a decomposable sum of independent parts; a tractable approach that 
applies robustly in designed engineering contexts. As a consequence, an extensive 
methodological tool chest has evolved for analyzing linear (separable) systems. 
Indeed the ubiquity of available tools seems to be the main reason why these 
methods and concepts continue to be used in non-engineering contexts, despite the 
obvious problem that they do not match our current views of how most real (non-
engineered) systems are structured (interdependently) and actually behave (i.e, 
exhibiting non-stationary, non-equilibrium and non-separable state dependence). 

click
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This	Commentary	appeared	in	PNAS	a	year	ago	and	was	a	nice	confirma@on	of	the	
idea.	

-data	science,	makes	this	all	possible…data	driven	discovery


