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1 Introduction

1.1 Examples of Time Series
1.2 Objectives of Time Series Analysis
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1.4 Stationary Models and the Autocorrelation Function
1.5 Estimation and Elimination of Trend and Seasonal Components
1.6 Testing the Estimated Noise Sequence

In this chapter we introduce some basic ideas of time series analysis and stochastic
processes.Of particular importance are the concepts of stationarity and the autocovari-
ance and sample autocovariance functions. Some standard techniques are described
for the estimation and removal of trend and seasonality (of known period) from an
observed time series. These are illustrated with reference to the data sets in Section
1.1. The calculations in all the examples can be carried out using the time series pack-
age ITSM, the student version of which is supplied on the enclosed CD. The data sets
are contained in files with names ending in .TSM. For example, the Australian red
wine sales are filed as WINE.TSM. Most of the topics covered in this chapter will
be developed more fully in later sections of the book. The reader who is not already
familiar with random variables and random vectors should first read Appendix A,
where a concise account of the required background is given.

1.1 Examples of Time Series

A time series is a set of observations x t , each one being recorded at a specific time t .
A discrete-time time series (the type to which this book is primarily devoted) is one
in which the set T0 of times at which observations are made is a discrete set, as is the
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Figure 1-1
The Australian red wine

sales, Jan. ‘80 – Oct. ‘91.  
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case, for example, when observations are made at fixed time intervals. Continuous-
time time series are obtained when observations are recorded continuously over some
time interval, e.g., when T0 ! [0, 1].

Example 1.1.1 Australian red wine sales; WINE.TSM

Figure 1.1 shows the monthly sales (in kiloliters) of red wine by Australian winemak-
ers from January 1980 through October 1991. In this case the set T0 consists of the
142 times {(Jan. 1980), (Feb. 1980), . . . ,(Oct. 1991)}. Given a set of n observations
made at uniformly spaced time intervals, it is often convenient to rescale the time
axis in such a way that T0 becomes the set of integers {1, 2, . . . , n}. In the present
example this amounts to measuring time in months with (Jan. 1980) as month 1. Then
T0 is the set {1, 2, . . . , 142}. It appears from the graph that the sales have an upward
trend and a seasonal pattern with a peak in July and a trough in January. To plot the
data using ITSM, run the program by double-clicking on the ITSM icon and then
select the option File>Project>Open>Univariate, click OK, and select the file
WINE.TSM. The graph of the data will then appear on your screen.

Example 1.1.2 All-star baseball games, 1933–1995

Figure 1.2 shows the results of the all-star games by plotting xt , where

xt !
{
1 if the National League won in year t,

−1 if the American League won in year t .
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Figure 1-2
Results of the

all-star baseball
games, 1933–1995.
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This is a series with only two possible values, ± 1. It also has some missing values,
since no game was played in 1945, and two games were scheduled for each of the
years 1959–1962.

Example 1.1.3 Accidental deaths, U.S.A., 1973–1978; DEATHS.TSM

Like the red wine sales, the monthly accidental death figures show a strong seasonal
pattern, with the maximum for each year occurring in July and the minimum for each
year occurring in February. The presence of a trend in Figure 1.3 ismuch less apparent
than in the wine sales. In Section 1.5 we shall consider the problem of representing
the data as the sum of a trend, a seasonal component, and a residual term.

Example 1.1.4 A signal detection problem; SIGNAL.TSM

Figure 1.4 shows simulated values of the series

Xt ! cos
(

t

10

)
+ Nt, t ! 1, 2, . . . , 200,

where {Nt} is a sequence of independent normal random variables, with mean 0
and variance 0.25. Such a series is often referred to as signal plus noise, the signal
being the smooth function, St ! cos( t

10 ) in this case. Given only the data Xt , how
can we determine the unknown signal component? There are many approaches to
this general problem under varying assumptions about the signal and the noise. One
simple approach is to smooth the data by expressing Xt as a sum of sine waves of
various frequencies (see Section 4.2) and eliminating the high-frequency components.
If we do this to the values of {Xt} shown in Figure 1.4 and retain only the lowest
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Figure 1-3
The monthly accidental

deaths data, 1973–1978.  
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Figure 1-4
The series {Xt} of

Example 1.1.4.
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Figure 1-5
Population of the
U.S.A. at ten-year

intervals, 1790–1990.  
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Figure 1-6
Strikes in the

U.S.A., 1951–1980.  
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3.5% of the frequency components, we obtain the estimate of the signal also shown
in Figure 1.4. The waveform of the signal is quite close to that of the true signal in
this case, although its amplitude is somewhat smaller.

Example 1.1.5 Population of the U.S.A., 1790–1990; USPOP.TSM

The population of the U.S.A., measured at ten-year intervals, is shown in Figure 1.5.
The graph suggests the possibility of fitting a quadratic or exponential trend to the
data. We shall explore this further in Section 1.3.

Example 1.1.6 Number of strikes per year in the U.S.A., 1951–1980; STRIKES.TSM

The annual numbers of strikes in the U.S.A. for the years 1951–1980 are shown in
Figure 1.6. They appear to fluctuate erratically about a slowly changing level.

1.2 Objectives of Time Series Analysis

The examples considered in Section 1.1 are an extremely small sample from the
multitude of time series encountered in the fields of engineering, science, sociology,
and economics. Our purpose in this book is to study techniques for drawing inferences
fromsuch series.Beforewecando this, however, it is necessary to set up ahypothetical
probability model to represent the data. After an appropriate family of models has
been chosen, it is then possible to estimate parameters, check for goodness of fit to
the data, and possibly to use the fitted model to enhance our understanding of the
mechanism generating the series. Once a satisfactory model has been developed, it
may be used in a variety of ways depending on the particular field of application.

The model may be used simply to provide a compact description of the data. We
may, for example, be able to represent the accidental deaths data of Example 1.1.3 as
the sum of a specified trend, and seasonal and random terms. For the interpretation
of economic statistics such as unemployment figures, it is important to recognize the
presence of seasonal components and to remove them so as not to confuse them with
long-term trends. This process is known as seasonal adjustment. Other applications
of time series models include separation (or filtering) of noise from signals as in
Example 1.1.4, prediction of future values of a series such as the red wine sales in
Example 1.1.1 or the population data in Example 1.1.5, testing hypotheses such as
global warming using recorded temperature data, predicting one series from obser-
vations of another, e.g., predicting future sales using advertising expenditure data,
and controlling future values of a series by adjusting parameters. Time series models
are also useful in simulation studies. For example, the performance of a reservoir
depends heavily on the random daily inputs of water to the system. If these are mod-
eled as a time series, then we can use the fitted model to simulate a large number
of independent sequences of daily inputs. Knowing the size and mode of operation
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of the reservoir, we can determine the fraction of the simulated input sequences that
cause the reservoir to run out of water in a given time period. This fraction will then
be an estimate of the probability of emptiness of the reservoir at some time in the
given period.

1.3 Some Simple Time Series Models

An important part of the analysis of a time series is the selection of a suitable proba-
bility model (or class of models) for the data. To allow for the possibly unpredictable
nature of future observations it is natural to suppose that each observation x t is a
realized value of a certain random variable Xt .

Definition 1.3.1 A time series model for the observed data {x t} is a specification of the joint
distributions (or possibly only themeans and covariances) of a sequence of random
variables {Xt} of which {x t} is postulated to be a realization.

Remark. We shall frequently use the term time series to mean both the data and
the process of which it is a realization.

A complete probabilistic time series model for the sequence of random vari-
ables {X1, X2, . . .}would specify all of the joint distributions of the random vectors
(X1, . . . , Xn)

′, n " 1, 2, . . ., or equivalently all of the probabilities

P [X1 ≤ x 1, . . . , Xn ≤ x n], −∞ < x 1, . . . , x n < ∞, n " 1, 2, . . . .

Such a specification is rarely used in time series analysis (unless the data are generated
by some well-understood simple mechanism), since in general it will contain far too
many parameters to be estimated from the available data. Instead we specify only the
first- and second-order moments of the joint distributions, i.e., the expected values
EXt and the expected products E(Xt+hXt), t " 1, 2, . . ., h " 0, 1, 2, . . ., focusing
on properties of the sequence {Xt} that depend only on these. Such properties of {Xt}
are referred to as second-order properties. In the particular case where all the joint
distributions are multivariate normal, the second-order properties of {Xt} completely
determine the joint distributions and hence give a complete probabilistic characteri-
zation of the sequence. In general we shall lose a certain amount of information by
looking at time series “through second-order spectacles”; however, as we shall see
in Chapter 2, the theory of minimum mean squared error linear prediction depends
only on the second-order properties, thus providing further justification for the use
of the second-order characterization of time series models.

Figure 1.7 shows one ofmany possible realizations of {St , t " 1, . . . , 200}, where
{St} is a sequence of random variables specified in Example 1.3.3 below. In most
practical problems involving time series we see only one realization. For example,
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there is only one available realization of Fort Collins’s annual rainfall for the years
1900–1996, but we imagine it to be one of the many sequences that might have
occurred. In the following examples we introduce some simple time series models.
One of our goals will be to expand this repertoire so as to have at our disposal a broad
range of models with which to try to match the observed behavior of given data sets.

1.3.1 Some Zero-Mean Models

Example 1.3.1 iid noise

Perhaps the simplest model for a time series is one in which there is no trend or
seasonal component and in which the observations are simply independent and iden-
tically distributed (iid) random variables with zero mean.We refer to such a sequence
of random variables X1, X2, . . . as iid noise. By definition we can write, for any
positive integer n and real numbers x1, . . . , xn,

P [X1 ≤ x1, . . . , Xn ≤ xn] " P [X1 ≤ x1] · · · P [Xn ≤ xn] " F(x1) · · · F(xn),

where F(·) is the cumulative distribution function (see Section A.1) of each of
the identically distributed random variables X1, X2, . . . . In this model there is no
dependence between observations. In particular, for all h ≥ 1 and all x, x1, . . . , xn,

P [Xn+h ≤ x|X1 " x1, . . . , Xn " xn] " P [Xn+h ≤ x],

showing that knowledge of X1, . . . , Xn is of no value for predicting the behavior
of Xn+h. Given the values of X1, . . . , Xn, the function f that minimizes the mean
squared error E

[
(Xn+h − f (X1, . . . , Xn))

2] is in fact identically zero (see Problem
1.2). Although this means that iid noise is a rather uninteresting process for forecast-
ers, it plays an important role as a building block for more complicated time series
models.

Example 1.3.2 A binary process

As an example of iid noise, consider the sequence of iid random variables {Xt, t "
1, 2, . . . , } with

P [Xt " 1] " p, P [Xt " −1] " 1− p,

where p " 1
2 . The time series obtained by tossing a penny repeatedly and scoring

+1 for each head and −1 for each tail is usually modeled as a realization of this
process. A priori we might well consider the same process as a model for the all-star
baseball games in Example 1.1.2. However, even a cursory inspection of the results
from 1963–1982, which show the National League winning 19 of 20 games, casts
serious doubt on the hypothesis P [Xt " 1] " 1

2 .
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Example 1.3.3 Random walk

The random walk {St , t ! 0, 1, 2, . . .} (starting at zero) is obtained by cumulatively
summing (or “integrating”) iid randomvariables. Thus a randomwalkwith zeromean
is obtained by defining S0 ! 0 and

St ! X1 + X2 + · · · + Xt, for t ! 1, 2, . . . ,

where {Xt} is iid noise. If {Xt} is the binary process of Example 1.3.2, then {St , t !
0, 1, 2, . . . , } is called a simple symmetric random walk. This walk can be viewed
as the location of a pedestrian who starts at position zero at time zero and at each
integer time tosses a fair coin, stepping one unit to the right each time a head appears
and one unit to the left for each tail. A realization of length 200 of a simple symmetric
random walk is shown in Figure 1.7. Notice that the outcomes of the coin tosses can
be recovered from {St , t ! 0, 1, . . .} by differencing. Thus the result of the t th toss
can be found from St − St−1 ! Xt .

1.3.2 Models with Trend and Seasonality

In several of the time series examples of Section 1.1 there is a clear trend in the data.
An increasing trend is apparent in both the Australian red wine sales (Figure 1.1)
and the population of the U.S.A. (Figure 1.5). In both cases a zero-mean model for
the data is clearly inappropriate. The graph of the population data, which contains no
apparent periodic component, suggests trying a model of the form

Xt ! mt + Yt ,

Figure 1-7
One realization of a
simple random walk

{St, t ! 0, 1, 2, . . . , 200}
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where mt is a slowly changing function known as the trend component and Yt has
zero mean. A useful technique for estimatingmt is the method of least squares (some
other methods are considered in Section 1.5).

In the least squares procedure we attempt to fit a parametric family of functions,
e.g.,

mt ! a0 + a1t + a2t
2, (1.3.1)

to the data {x 1, . . . , x n} by choosing the parameters, in this illustration a0, a1, and a2, to
minimize

∑n
t!1(x t −mt)

2. This method of curve fitting is called least squares regres-
sion and can be carried out using the program ITSM and selecting the Regression
option.

Example 1.3.4 Population of the U.S.A., 1790–1990

To fit a function of the form (1.3.1) to the population data shown in Figure 1.5 we
relabel the time axis so that t ! 1 corresponds to 1790 and t ! 21 corresponds to
1990. Run ITSM, select File>Project>Open>Univariate, and open the file US-
POP.TSM. Then select Regression>Specify, choose Polynomial Regression
with order equal to 2, and click OK. Then select Regression>Estimation>Least
Squares, and you will obtain the following estimated parameter values in the model
(1.3.1):

â0 ! 6.9579× 106,

â1 ! −2.1599× 106,

and

â2 ! 6.5063× 105.

A graph of the fitted function is shown with the original data in Figure 1.8. The
estimated values of the noise process Yt , 1 ≤ t ≤ 21, are the residuals obtained by
subtraction of m̂t ! â0 + â1t + â2t

2 from x t .
The estimated trend component m̂t furnishes us with a natural predictor of future

values of Xt . For example, if we estimate the noise Y22 by its mean value, i.e., zero,
then (1.3.1) gives the estimated U.S. population for the year 2000 as

m̂22 ! 6.9579× 106 − 2.1599× 106 × 22+ 6.5063× 105 × 222 ! 274.35× 106.

However, if the residuals {Yt} are highly correlated, wemay be able to use their values
to give a better estimate of Y22 and hence of the populationX22 in the year 2000.

Example 1.3.5 Level of Lake Huron 1875–1972; LAKE.DAT

A graph of the level in feet of Lake Huron (reduced by 570) in the years 1875–1972
is displayed in Figure 1.9. Since the lake level appears to decline at a roughly linear
rate, ITSM was used to fit a model of the form

Xt ! a0 + a1t + Yt , t ! 1, . . . , 98 (1.3.2)
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Figure 1-8
Population of the U.S.A.

showing the quadratic trend
fitted by least squares.  
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(with the time axis relabeled as in Example 1.3.4). The least squares estimates of the
parameter values are

â0 ! 10.202 and â1 ! −.0242.

(The resulting least squares line, â0 + â1t , is also displayed in Figure 1.9.) The
estimates of the noise,Yt , in themodel (1.3.2) are the residuals obtained by subtracting
the least squares line from x t and are plotted in Figure 1.10. There are two interesting

Figure 1-9
Level of Lake Huron

1875–1972 showing the
line fitted by least squares.
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Figure 1-10
Residuals from fitting a
line to the Lake Huron

data in Figure 1.9.
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features of the graph of the residuals. The first is the absence of any discernible trend.
The second is the smoothness of the graph. (In particular, there are long stretches of
residuals that have the same sign. This would be very unlikely to occur if the residuals
were observations of iid noise with zero mean.) Smoothness of the graph of a time
series is generally indicative of the existence of some form of dependence among the
observations.

Such dependence can be used to advantage in forecasting future values of the
series. If wewere to assume the validity of the fittedmodel with iid residuals {Yt}, then
the minimum mean squared error predictor of the next residual (Y99) would be zero
(by Problem 1.2). However, Figure 1.10 strongly suggests that Y99 will be positive.

How then do we quantify dependence, and how do we construct models for fore-
casting that incorporate dependence of a particular type? To deal with these questions,
Section 1.4 introduces the autocorrelation function as a measure of dependence, and
stationary processes as a family of useful models exhibiting a wide variety of depen-
dence structures.

Harmonic Regression
Many time series are influenced by seasonally varying factors such as the weather, the
effect of which can bemodeled by a periodic component with fixed known period. For
example, the accidental deaths series (Figure 1.3) shows a repeating annual pattern
with peaks in July and troughs in February, strongly suggesting a seasonal factor
with period 12. In order to represent such a seasonal effect, allowing for noise but
assuming no trend, we can use the simple model,

Xt ! st + Yt ,
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where st is a periodic function of t with period d (st−d " st ). A convenient choice for
st is a sum of harmonics (or sine waves) given by

st " a0 +
k∑

j"1
(aj cos(λj t) + bj sin(λj t)), (1.3.3)

where a0, a1, . . . , ak and b1, . . . , bk are unknown parameters and λ1, . . . , λk are fixed
frequencies, each being some integer multiple of 2π/d. To carry out harmonic re-
gression using ITSM, select Regression>Specify and check Include intercept
term and Harmonic Regression. Then specify the number of harmonics (k in
(1.3.3)) and enter k integer-valued Fourier indices f1, . . . , fk. For a sine wave with
period d, set f1 " n/d, where n is the number of observations in the time series. (If
n/d is not an integer, you will need to delete a few observations from the beginning
of the series to make it so.) The other k − 1 Fourier indices should be positive integer
multiples of the first, corresponding to harmonics of the fundamental sine wave with
period d. Thus to fit a single sine wave with period 365 to 365 daily observations we
would choose k " 1 and f1 " 1. To fit a linear combination of sinewaveswith periods
365/j , j " 1, . . . , 4, we would choose k " 4 and fj " j , j " 1, . . . , 4. Once k and
f1, . . . , fk have been specified, click OK and then select Regression>Estimation
>Least Squares to obtain the required regression coefficients. To see how well the
fitted function matches the data, select Regression>Show fit.

Example 1.3.6 Accidental deaths

To fit a sum of two harmonics with periods twelve months and six months to the
monthly accidental deaths data x 1, . . . , x n with n " 72, we choose k " 2, f1 "

Figure 1-11
The estimated harmonic

component of the
accidental deaths

data from ITSM.  
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n/12 ! 6, and f2 ! n/6 ! 12. Using ITSM as described above, we obtain the fitted
function shown in Figure 1.11. As can be seen from the figure, the periodic character
of the series is captured reasonably well by this fitted function. In practice, it is worth
experimenting with several different combinations of harmonics in order to find a sat-
isfactory estimate of the seasonal component. The program ITSM also allows fitting
a linear combination of harmonics and polynomial trend by checking both Harmonic
Regression and Polynomial Regression in the Regression>Specification
dialog box. Other methods for dealing with seasonal variation in the presence of
trend are described in Section 1.5.

1.3.3 A General Approach to Time Series Modeling

The examples of the previous section illustrate a general approach to time series
analysis that will form the basis for much of what is done in this book. Before
introducing the ideas of dependence and stationarity, we outline this approach to
provide the reader with an overview of the way in which the various ideas of this
chapter fit together.

• Plot the series and examine the main features of the graph, checking in particular
whether there is
(a) a trend,
(b) a seasonal component,
(c) any apparent sharp changes in behavior,
(d) any outlying observations.

• Remove the trend and seasonal components to get stationary residuals (as defined
in Section 1.4). To achieve this goal it may sometimes be necessary to apply a
preliminary transformation to the data. For example, if the magnitude of the
fluctuations appears to grow roughly linearly with the level of the series, then
the transformed series {lnX1, . . . , lnXn} will have fluctuations of more constant
magnitude. See, for example, Figures 1.1 and 1.17. (If some of the data are
negative, add a positive constant to each of the data values to ensure that all
values are positive before taking logarithms.) There are several ways in which
trend and seasonality canbe removed (seeSection1.5), some involving estimating
the components and subtracting them from the data, and others depending on
differencing the data, i.e., replacing the original series {Xt} by {Yt :! Xt −Xt−d}
for some positive integer d. Whichever method is used, the aim is to produce a
stationary series, whose values we shall refer to as residuals.

• Choose a model to fit the residuals, making use of various sample statistics in-
cluding the sample autocorrelation function to be defined in Section 1.4.

• Forecasting will be achieved by forecasting the residuals and then inverting the
transformations described above to arrive at forecasts of the original series {Xt}.
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• An extremely useful alternative approach touched on only briefly in this book is
to express the series in terms of its Fourier components, which are sinusoidal
waves of different frequencies (cf. Example 1.1.4). This approach is especially
important in engineering applications such as signal processing and structural
design. It is important, for example, to ensure that the resonant frequency of a
structure does not coincide with a frequency at which the loading forces on the
structure have a particularly large component.

1.4 Stationary Models and the Autocorrelation Function

Loosely speaking, a time series {Xt, t ! 0, ± 1, . . .} is said to be stationary if it has sta-
tistical properties similar to those of the “time-shifted” series {Xt+h, t ! 0, ± 1, . . .},
for each integer h. Restricting attention to those properties that depend only on the
first- and second-order moments of {Xt}, we can make this idea precise with the
following definitions.

Definition 1.4.1 Let {Xt} be a time series with E(X2
t ) < ∞. The mean function of {Xt} is

µX(t) ! E(Xt).

The covariance function of {Xt} is

γX(r, s) ! Cov(Xr, Xs) ! E[(Xr −µX(r))(Xs −µX(s))]

for all integers r and s.

Definition 1.4.2 {Xt} is (weakly) stationary if

(i) µX(t) is independent of t,

and

(ii) γX(t + h, t) is independent of t for each h.

Remark 1. Strict stationarity of a time series {Xt, t ! 0, ± 1, . . .} is defined by the
condition that (X1, . . . , Xn) and (X1+h, . . . , Xn+h) have the same joint distributions
for all integers h and n > 0. It is easy to check that if {Xt} is strictly stationary and
EX2

t < ∞ for all t , then {Xt} is also weakly stationary (Problem 1.3). Whenever we
use the term stationarywe shall mean weakly stationary as in Definition 1.4.2, unless
we specifically indicate otherwise.

Remark 2. In view of condition (ii), whenever we use the term covariance function
with reference to a stationary time series {Xt} we shall mean the function γX of one
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variable, defined by

γX(h) :! γX(h, 0) ! γX(t + h, t).

The function γX(·) will be referred to as the autocovariance function and γX(h) as its
value at lag h.

Definition 1.4.3 Let {Xt} be a stationary time series. The autocovariance function (ACVF) of
{Xt} at lag h is

γX(h) ! Cov(Xt+h, Xt).

The autocorrelation function (ACF) of {Xt} at lag h is

ρX(h) ≡ γX(h)

γX(0)
! Cor(Xt+h, Xt).

In the following examples we shall frequently use the easily verified linearity prop-
erty of covariances, that if EX2 < ∞, EY 2 < ∞, EZ2 < ∞ and a, b, and c are any
real constants, then

Cov(aX + bY + c, Z) ! a Cov(X,Z) + bCov(Y, Z).

Example 1.4.1 iid noise

If {Xt} is iid noise and E(X2
t ) ! σ 2 < ∞, then the first requirement of Definition

1.4.2 is obviously satisfied, since E(Xt) ! 0 for all t . By the assumed independence,

γX(t + h, t) !
{
σ 2, if h ! 0,

0, if h ̸! 0,
which does not depend on t . Hence iid noise with finite second moment is stationary.
We shall use the notation

{Xt} ∼IID
(
0, σ 2

)

to indicate that the random variables Xt are independent and identically distributed
random variables, each with mean 0 and variance σ 2.

Example 1.4.2 White noise

If {Xt} is a sequence of uncorrelated random variables, each with zero mean and
variance σ 2, then clearly {Xt} is stationary with the same covariance function as the
iid noise in Example 1.4.1. Such a sequence is referred to as white noise (with mean
0 and variance σ 2). This is indicated by the notation

{Xt} ∼WN
(
0, σ 2

)
.
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Clearly, every IID
(
0, σ 2

)
sequence isWN

(
0, σ 2

)
but not conversely (see Problem 1.8

and the ARCH(1) process of Section 10.3).

Example 1.4.3 The random walk

If {St} is the random walk defined in Example 1.3.3 with {Xt} as in Example 1.4.1,
then ESt ! 0, E(S2t ) ! tσ 2 < ∞ for all t , and, for h ≥ 0,

γS(t + h, t) ! Cov(St+h, St )

! Cov(St + Xt+1 + · · · + Xt+h, St )

! Cov(St , St )

! tσ 2.

Since γS(t + h, t) depends on t , the series {St} is not stationary.

Example 1.4.4 First-order moving average or MA(1) process

Consider the series defined by the equation

Xt ! Zt + θZt−1, t ! 0, ± 1, . . . , (1.4.1)

where {Zt} ∼ WN
(
0, σ 2

)
and θ is a real-valued constant. From (1.4.1) we see that

EXt ! 0, EX2
t ! σ 2(1+ θ 2) < ∞, and

γX(t + h, t) !

⎧
⎪⎪⎨

⎪⎪⎩

σ 2
(
1+ θ 2

)
, if h ! 0,

σ 2θ, if h ! ± 1,

0, if |h| > 1.

Thus the requirements of Definition 1.4.2 are satisfied, and {Xt} is stationary. The
autocorrelation function of {Xt} is

ρX(h) !

⎧
⎪⎨

⎪⎩

1, if h ! 0,

θ/
(
1+ θ 2

)
, if h ! ± 1,

0, if |h| > 1.

Example 1.4.5 First-order autoregression or AR(1) process

Let us assume now that {Xt} is a stationary series satisfying the equations

Xt ! φXt−1 + Zt, t ! 0, ± 1, . . . , (1.4.2)

where {Zt} ∼ WN(0, σ 2), |φ| < 1, andZt is uncorrelated withXs for each s < t . (We
shall show in Section 2.2 that there is in fact exactly one such solution of (1.4.2).) By
taking expectations on each side of (1.4.2) and using the fact that EZt ! 0, we see

Viorel
Rectangle
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at once that

EXt ! 0.

To find the autocorrelation function of {Xt} we multiply each side of (1.4.2) by Xt−h

(h > 0) and then take expectations to get

γX(h) ! Cov(Xt , Xt−h)

! Cov(φXt−1, Xt−h) + Cov(Zt , Xt−h)

! φγX(h − 1) + 0 ! · · · ! φhγ
X
(0).

Observing that γ (h) ! γ (−h) and using Definition 1.4.3, we find that

ρX(h) ! γX(h)

γX(0)
! φ|h|, h ! 0, ± 1, . . . .

It follows from the linearity of the covariance function in each of its arguments and
the fact that Zt is uncorrelated with Xt−1 that

γX(0) ! Cov(Xt , Xt) ! Cov(φXt−1 + Zt,φXt−1 + Zt) ! φ2γX(0) + σ 2

and hence that γX(0) ! σ 2/
(
1− φ2

)
.

1.4.1 The Sample Autocorrelation Function

Although we have just seen how to compute the autocorrelation function for a few
simple time series models, in practical problems we do not start with a model, but
with observed data {x 1, x 2, . . . , x n}. To assess the degree of dependence in the data
and to select a model for the data that reflects this, one of the important tools we
use is the sample autocorrelation function (sample ACF) of the data. If we believe
that the data are realized values of a stationary time series {Xt}, then the sample
ACF will provide us with an estimate of the ACF of {Xt}. This estimate may suggest
which of the many possible stationary time series models is a suitable candidate for
representing the dependence in the data. For example, a sample ACF that is close
to zero for all nonzero lags suggests that an appropriate model for the data might
be iid noise. The following definitions are natural sample analogues of those for the
autocovariance and autocorrelation functions given earlier for stationary time series
models.
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Definition 1.4.4 Let x1, . . . , xn be observations of a time series. The sample mean of x1, . . . , xn is

x̄ ! 1
n

n∑

t!1
xt .

The sample autocovariance function is

γ̂ (h) :! n−1
n−|h|∑

t!1
(xt+|h| − x̄)(xt − x̄), −n < h < n.

The sample autocorrelation function is

ρ̂(h) ! γ̂ (h)

γ̂ (0)
, −n < h < n.

Remark 3. For h ≥ 0, γ̂ (h) is approximately equal to the sample covariance of
the n − h pairs of observations (x1, x1+h), (x2, x2+h), . . . , (xn−h, xn). The difference
arises from use of the divisor n instead of n − h and the subtraction of the overall
mean, x̄, from each factor of the summands. Use of the divisor n ensures that the
sample covariance matrix #̂n :! [γ̂ (i − j)]ni,j!1 is nonnegative definite (see Section
2.4.2).

Remark 4. Like the sample covariance matrix defined in Remark 3, the sample
correlation matrix R̂n :! [ρ̂(i − j)]ni,j!1 is nonnegative definite. Each of its diagonal
elements is equal to 1, since ρ̂(0) ! 1.

Figure 1-12
200 simulated values

of iid N(0,1) noise.
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Example 1.4.6 Figure 1.12 shows 200 simulated values of normally distributed iid (0, 1), denoted
by IID N(0, 1), noise. Figure 1.13 shows the corresponding sample autocorrelation
function at lags 0, 1, . . . , 40. Since ρ(h) ! 0 for h > 0, one would also expect the
corresponding sample autocorrelations to be near 0. It can be shown, in fact, that for iid
noise with finite variance, the sample autocorrelations ρ̂(h), h > 0, are approximately
IID N(0, 1/n) for n large (see TSTM p. 222). Hence, approximately 95% of the
sample autocorrelations should fall between the bounds ± 1.96/

√
n (since 1.96 is

the .975 quantile of the standard normal distribution). Therefore, in Figure 1.13 we
would expect roughly 40(.05) ! 2 values to fall outside the bounds. To simulate 200
values of IID N(0, 1) noise using ITSM, select File>Project>New>Univariate
then Model>Simulate. In the resulting dialog box, enter 200 for the required Number
of Observations. (The remaining entries in the dialog box can be left as they are,
since the model assumed by ITSM, until you enter another, is IID N(0, 1) noise. If
you wish to reproduce exactly the same sequence at a later date, record the Random
Number Seed for later use. By specifying different values for the random number
seed you can generate independent realizations of your time series.) Click on OK and
you will see the graph of your simulated series. To see its sample autocorrelation
function together with the autocorrelation function of the model that generated it,
click on the third yellow button at the top of the screen and you will see the two
graphs superimposed (with the latter in red.) The horizontal lines on the graph are
the bounds ± 1.96/

√
n.

Remark 5. The sample autocovariance and autocorrelation functions can be com-
puted for any data set {x1, . . . , xn} and are not restricted to observations from a

Figure 1-13
The sample autocorrelation

function for the data of
Figure 1.12 showing

the bounds ± 1.96/
√
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Figure 1-14
The sample autocorrelation

function for the Australian
red wine sales showing
the bounds ± 1.96/
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stationary time series. For data containing a trend, |ρ̂(h)| will exhibit slow decay as
h increases, and for data with a substantial deterministic periodic component, |ρ̂(h)|
will exhibit similar behavior with the same periodicity. (See the sample ACF of the
Australian red wine sales in Figure 1.14 and Problem 1.9.) Thus ρ̂(·) can be useful
as an indicator of nonstationarity (see also Section 6.1).

1.4.2 A Model for the Lake Huron Data

As noted earlier, an iid noise model for the residuals {y 1, . . . , y 98} obtained by fitting
a straight line to the Lake Huron data in Example 1.3.5 appears to be inappropriate.
This conclusion is confirmed by the sample ACF of the residuals (Figure 1.15), which
has three of the first forty values well outside the bounds ± 1.96/

√
98.

The roughly geometric decay of the first few sample autocorrelations (with
ρ̂(h + 1)/ρ̂(h) ≈ 0.7) suggests that an AR(1) series (with φ ≈ 0.7) might pro-
vide a reasonable model for these residuals. (The form of the ACF for an AR(1)
process was computed in Example 1.4.5.)

To explore the appropriateness of such a model, consider the points (y 1, y 2),
(y 2, y 3), . . . , (y 97, y 98) plotted in Figure 1.16. The graph does indeed suggest a linear
relationship between y t and y t−1. Using simple least squares estimation to fit a straight
line of the form y t $ ay t−1, we obtain the model

Yt $ .791Yt−1 + Zt, (1.4.3)

where {Zt} is iid noise with variance
∑98

t$2(y t − .791y t−1)
2/97 $ .5024. The sample

ACF of the estimated noise sequence zt $ y t − .791y t−1, t $ 2, . . . , 98, is slightly
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Figure 1-15
The sample autocorrelation

function for the Lake
Huron residuals of

Figure 1.10 showing
the bounds ± 1.96/
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outside the bounds ± 1.96/
√
97 at lag 1 (ρ̂(1) " .216), but it is inside the bounds for

all other lags up to 40. This check that the estimated noise sequence is consistent with
the iid assumption of (1.4.3) reinforces our belief in the fitted model. More goodness
of fit tests for iid noise sequences are described in Section 1.6. The estimated noise
sequence {zt} in this example passes them all, providing further support for the model
(1.4.3).

Figure 1-16
Scatter plot of

(yt−1, yt), t " 2, . . . , 98,
for the data in Figure 1.10
showing the least squares

regression line y " .791x .
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A better fit to the residuals in equation (1.3.2) is provided by the second-order
autoregression

Yt ! φ1Yt−1 + φ2Yt−2 + Zt, (1.4.4)

where {Zt} is iid noise with variance σ 2. This is analogous to a linear model in
which Yt is regressed on the previous two values Yt−1 and Yt−2 of the time series. The
least squares estimates of the parameters φ1 and φ2, found by minimizing

∑98
t!3(y t −

φ1y t−1 − φ2y t−2)
2, are φ̂1 ! 1.002 and φ̂2 ! −.2834. The estimate of σ 2 is σ̂ 2 !∑98

t!3(y t − φ̂1y t−1 − φ̂2y t−2)
2/96 ! .4460, which is approximately 11% smaller than

the estimate of the noise variance for the AR(1) model (1.4.3). The improved fit is
indicated by the sample ACF of the estimated residuals, y t − φ̂1y t−1 − φ̂2y t−2, which
falls well within the bounds ± 1.96/

√
96 for all lags up to 40.

1.5 Estimation and Elimination of Trend and Seasonal Components

The first step in the analysis of any time series is to plot the data. If there are any
apparent discontinuities in the series, such as a sudden change of level, it may be
advisable to analyze the series by first breaking it into homogeneous segments. If
there are outlying observations, they should be studied carefully to check whether
there is any justification for discarding them (as for example if an observation has
been incorrectly recorded). Inspection of a graph may also suggest the possibility
of representing the data as a realization of the process (the classical decomposition
model)

Xt ! mt + st + Yt , (1.5.1)

wheremt is a slowly changing function known as a trend component, st is a function
with known period dreferred to as a seasonal component, and Yt is a random noise
component that is stationary in the sense of Definition 1.4.2. If the seasonal and noise
fluctuations appear to increase with the level of the process, then a preliminary trans-
formation of the data is often used to make the transformed data more compatible
with the model (1.5.1). Compare, for example, the red wine sales in Figure 1.1 with
the transformed data, Figure 1.17, obtained by applying a logarithmic transformation.
The transformed data do not exhibit the increasing fluctuation with increasing level
that was apparent in the original data. This suggests that the model (1.5.1) is more
appropriate for the transformed than for the original series. In this section we shall
assume that the model (1.5.1) is appropriate (possibly after a preliminary transfor-
mation of the data) and examine some techniques for estimating the components mt ,
st , and Yt in the model.

Our aim is to estimate and extract the deterministic components mt and st in
the hope that the residual or noise component Yt will turn out to be a stationary time
series.We can then use the theory of such processes to find a satisfactory probabilistic


